tìm số dư trong phép chia tổng sau cho 4
1^5+2^5+3^5+...+99^5+100^5
Bài 1
a) Tìm số dư trong phép chia 4.10mux100+1 khi chia cho 3
b) Tìm số dư trong phép chia 1+2+3+4+...+99+100 khi chia cho 9
c) Tìm số dư của phép chia 1+3+5+7+...+17+19 khi chia cho 2
tìm số dư của các phép tính sau:
a) 2^90 + 4^165 chia cho 7 b) 1^5 + 2^5 + 3^5 + ... + 99^5 chia cho 4 c)2^1000 chia cho 25
cám ơn :D
1. Viết số 1995^1995 thành tổng của các số tự nhiên. Tổng các lập phương đó chia cho 6 thì dư bao nhiêu ?
2. Tìm 3 chữ số tận cùng của 2^100 viết trong hệ thập phân
3. Tìm số dư trong phép chia cái số sau cho 7
a. 22^22 + 55^55
b. 3^1993
c. 1992^1993 + 1994^1995
d. 3^2^1930
4. Tìm số dư khi chia:
a. 2^1994 cho 7
b. 3^1998 + 5^1998 cho 13
c.A= 1^3 + 2^3 + 3^3 + ... + 99^3 chia cho B= 1 + 2 + 3 + ... + 99
1.
Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)
Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)
\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)
Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp
\(\Rightarrow S\) chia 6 dư a
Mà \(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)
Vậy S chia 6 dư 3
2.
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)
Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876
Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8
=> Ba CTSC là 376
3.
\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)
\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3
\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3
\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4
4.
\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4
\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)
\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)
CM bằng quy nạp (có trên mạng)
Cho tổng A= 2^0+2^1+2^2+2^3+2^4+2^5+....+2^100
Tìm số dư của phép chia tổng A cho 3
\(A=2^0+2^1+2^2+2^3+2^4+2^5+...+2^{100}\\ =\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+...+\left(2^{98}+2^{99}\right)+2^{100}\\ =3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+...+2^{98}.\left(1+2\right)+2^{100}\\ =3+2^2.3+2^4.3+...+2^{98}.3+2^{100}\\ =3.\left(1+2^2+2^4+...+2^{98}\right)+2^{100}\)
Vì : \(3\left(1+2^2+2^4+...+2^{98}\right)⋮3\) và \(2^{100}\) chia 3 dư 1
Nên A chia 3 dư 1
Số số hạng của A:
100 - 0 + 1 = 101 (số)
Do 101 : 2 = 50 (dư 1) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 2 số hạng và dư 1 số hạng như sau:
A = 2⁰ + (2¹ + 2²) + (2³ + 2⁴) + ... + (2⁹⁹ + 2¹⁰⁰)
= 1 + 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁹⁹.(1 + 2)
= 1 + 2.3 + 2³.3 + ... + 2⁹⁹.3
= 1 + 3.(2 + 2³ + ... + 2⁹⁹)
Do 3.(2 + 2³ + ... + 2⁹⁹) ⋮ 3
⇒ 1 + 3.(2 + 2³ + ... + 2⁹⁹) chia 3 dư 1
Vậy A chia 3 dư 1
Tìm số dư trong các phép chia sau :
1) 6^592 chia cho 11
2) 1532^5 -1 chia cho 9
3) 3.5^75 + 4.7^100 chia cho 132
4) 5^70 +7^50 chia cho 12
5) (5^30 +50)^30 chia cho 24
Tìm số dư trong phép chia tổng
A=4+42+43+...+4100 chia hết cho 5
tìm số dư của phép chia tổng s = 2^1 + 3^5 + 4^9 +...... + 2003^8005 cho 5
Tìm số dư của phép chia : 1- x+x2-x3+x4-x5+.......-x99+x100 chia cho x+1 . Só dư của phép chia là :..................
HD
Ghép tạo thừa số (x+1)
làm đi không làm dduocj mình mới làm chi tiết
thay x=-1. ra số dư, áp dụng định lý bê du
Cho tổng A= 2 mũ 0 + 2 mũ 1+ 2 mũ 2 + 2 mũ 3+ 2 mũ 4+ 2 mũ 5 + ..... + 2 mũ 100 Tìm số dư của phép chia tổng A cho 3