Tổng các hệ số của đa thức: \(\left(x^2-2xy+y^2\right)^7\)
Tổng các hệ số của đa thức khi khai triển:
\(\left(x^2-2xy+y^2\right)^7\)
Lưu ý rằng (x- y)k (k là số nguyên)luôn có hệ số bằng 0 (Bạn nào không biết thì lập tam giác paxcal nhé)
=> (x2- 2xy+ y2)7= ((x-y)2)7= (x- y)14
=> Đa thức trên có tổng các hệ số =0
Tổng các hệ số của đa thức \(\left(x^3y+5x^3-2y^2\right)^6.\left(y^3+4xy-7\right)^2\)sau khi khai triển và thu gọn là
Tính tổng các hệ số của đa thức : \(\left(x^3y+5x^3-2y^2\right)^6.\left(y^3+4xy-7\right)^2\)sau khi triển khai và thu gọn là
Cho đa thức : \(\text{A}=\frac{-7}{16}x^3y\cdot\left(2xy^2\right)^3\cdot\left(x^0\right)^2\ \) \(\left(x\ne0\right)\)
a) Thu gọn đơn thức, rồi xác định hệ số, phần biến, bậc của đa thức trên.
b) Biết rằng \(\text{A}<0\). Hãy so sánh giá trị của \(y\) với 0.
Cho đa thức g(x)= \(\left(x^2-5x+4\right)^{2010}.\left(x^2+7x+3\right)^{2011}\) Tìm tổng các hệ số của đa thức g(x)
a. Thu gọn đơn thức, tìm hệ số và bậc của đơn thức : B=\(-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)
b. Tìm đa thức C biết \(C-\left(xy-y^2\right)=x^2-xy+2y^2\)Tính giá trị của đa thức C tại \(x=-1;y=1\)
a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)
\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)
\(B=1x^4y^5\)
Hệ số: 1
Bậc: 9
Chưa định hình phần b) nó là như nào
Giải hệ bằng phương pháp phân tích đa thức thành nhân tử
a) \(\left\{{}\begin{matrix}xy+x-2=0\\2x^3-x^2y+x^2+y^2-2xy-y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{matrix}\right.\)
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
xác định tổng của các hệ số của đa thức :
\(f\left(x\right)=\left(19-20x+x^2\right)^{2021}\cdot\left(19+20x+x^2\right)^{2020}\)
Cho f(x)=\(\left(8x^2+5x-14\right)^{2015}.\left(3x^3-10x^2+6x+2\right)^{2016}\)
Sau khi thu gọn thì tính tổng các hệ số của f(x) là bao nhiêu?
gợi ý: tổng các hệ số trong đa thức 1 biến bằng giá trị của đa thức đó tại giá trị của biến bằng 1
Tổng các hệ số của 1 đa thức f(x) bất kì bằng giá trị của đa thức đó tại x=1
Vậy tổng các hệ số của đa thức
f(x)=(8x2+5x-14)2015.(3x3-10x2+6x+2)2016
=f(1)=(8.12+5.1-14)2015.(3.13-10.12+6.1+2)2016=(-1)2015.12016=(-1).1=-1