Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TT
Xem chi tiết
BH
4 tháng 3 2017 lúc 14:32

Ta có:

(x+y)2=x2+2xy+y2=1+2xy

Ta lại có: (x-y)2\(\ge\)0 <=> x2-2xy+y2\(\ge\)0 <=> 2xy \(\le\)x2+y2=1

=> (x+y)2=1+2xy\(\le\)1+1=2

=> GTLN của (x+y)2 là 2

Bình luận (0)
HV
Xem chi tiết
HV
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
LA
Xem chi tiết
TC
12 tháng 3 2017 lúc 22:04

ta đi chứng minh \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

thật vậy, \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Đẳng thức xảy ra <=> (x-y)^2=0 <=>x-y=0 <=>x=y

Bình luận (0)
TC
12 tháng 3 2017 lúc 22:06

áp dụng bất đẳng thức trên ta có \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.1=2\)

Đẳng thức xảy ra <=> x=y và x^2+y^2=1 <=> x=y=1/ căn 2

Bình luận (0)
TM
13 tháng 3 2017 lúc 0:10

Áp dụng bất đẳng thức Bu-nhi-a-cop-xki cho 2 bộ số (x;y) và (1;1) ta được:

\(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x.1+y.1\right)^2\)\(\Leftrightarrow2\ge\left(x+y\right)^2\)

Dấu "=" xảy ra khi x=y=\(\frac{1}{\sqrt{2}}\)

Vậy \(\left(x+y\right)^2\) đạt giá trị lớn nhất là 2 khi  \(x=y=\frac{1}{\sqrt{2}}\)

Bình luận (0)
HC
Xem chi tiết
NU
6 tháng 12 2023 lúc 23:07

Ta thấy 
72
=
2
3
.
3
2
72=2 
3
 .3 
2
  nên a, b có dạng 
{

=
2

3


=
2

.
3


a=2 
x
 3 
y
 
b=2 
z
 .3 
t
 

  với 

,

,

,


N
x,y,z,t∈N và 



{

,

}
=
3
;



{

,

}
=
2
max{x,z}=3;max{y,t}=2. 

 Theo đề bài, ta có 
2

.
3

+
2

.
3

=
42

x
 .3 
y
 +2 
z
 .3 
t
 =42

 

2


1
.
3


1
+
2


1
3


1
=
7
⇔2 
x−1
 .3 
y−1
 +2 
z−1
 3 
t−1
 =7   (*), do đó 

,

,

,


1
x,y,z,t≥1

 TH1: 



,



x≥z,y≤t. Khi đó 

=
3
,

=
2
x=3,t=2. (*) thành:

 
4.
3


1
+
3.
2


1
=
7
4.3 
y−1
 +3.2 
z−1
 =7 


=

=
1
⇔y=z=1

 Vậy 
{

=
24

=
18

a=24
b=18

  (nhận)

 TH2: KMTQ thì giả sử 



,



x≥z,y≥t. Khi đó 

=
3
,

=
2
x=3,z=2. (*) thành 

 
4.
3


1
+
2.
3


1
=
7
4.3 
y−1
 +2.3 
t−1
 =7, điều này là vô lí.

 Vậy 
(

,

)
=
(
24
,
18
)
(a,b)=(24,18) hay 
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.

Bình luận (0)
H24
Xem chi tiết
NL
5 tháng 11 2021 lúc 16:11

\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)

\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)

\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

Bình luận (0)
ND
Xem chi tiết
HY
Xem chi tiết
PN
20 tháng 4 2021 lúc 20:13

Ta co : \(x^2+y^2-4x+3=0\)

\(=>\left(x-2\right)^2+y^2=1\)

\(=>\left(x-2\right)^2\le1=>x\le3\)

Lai co : \(x^2+y^2=4x-3\le4.3-3=9\)

Dau = xay ra \(< =>\hept{\begin{cases}x=4\\y=0\end{cases}}\)

Vay gtln cua P = 9 khi x = 4 ; y = 0

(sai thi bo qua cho minh vi lan dau lam dang nay)

Bình luận (0)
 Khách vãng lai đã xóa