Câu 5 : Tìm min của biểu thức P =\(\dfrac{25}{x+5}-\dfrac{1}{x-2}\) với -4<x<2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1: Tìm x, biết:
a)\(x^2-\dfrac{16}{25}=0\) b)\(\dfrac{2}{5}-\left|\dfrac{1}{2}-x\right|=6\)
C2.Tính giá của biểu thức:
a)\(A=1\dfrac{5}{13}-0,25-\left(2\dfrac{5}{9}+\dfrac{18}{13}-\dfrac{1}{4}\right)\)
b)\(\dfrac{\dfrac{3}{5}.7^2-3.5^6+\dfrac{3}{5}.3^9}{\dfrac{3}{4}.7^2-\dfrac{3}{4}.5^7+\dfrac{3}{4}.3^9}\)
a)
x^2-16/25=0
x^2-4^2/5^2=0
=>x-4/5=0
x=0+4/5
x=0/5
Cho biểu thức: A = \(\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5}\)và B = \(\dfrac{x-5}{x+2}\)(ĐKXĐ:x ≠ 5; -2)
a) Tính giá trị của B khi x = 9
b)Rút gọn biểu thức P=A.B
c) Với x > -2, tìm x để P > \(\dfrac{1}{3}\)
a) \(A=\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5};B=\dfrac{x-5}{x+2}\left(x\ne\pm5;-2\right)\)
Khi \(x=9\) thì :
\(B=\dfrac{9-5}{9+2}=\dfrac{4}{11}\)
b) \(P=A.B\)
\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+4x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x^2+5x-x-5}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{x\left(x+5\right)-\left(x+5\right)}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\left[\dfrac{\left(x+5\right)\left(x-1\right)}{x+5}\right].\dfrac{1}{x+2}\)
\(\Leftrightarrow P=\dfrac{x-1}{x+2}\)
c) Theo đề bài để
\(P=\dfrac{x-1}{x+2}>\dfrac{1}{3}\left(x>-2\right)\)
\(\Leftrightarrow3\left(x-1\right)>x+2\)
\(\Leftrightarrow3x-3>x+2\)
\(\Leftrightarrow2x>5\)
\(\Leftrightarrow x>\dfrac{5}{2}\left(thỏa,đk:x>-2\right)\)
a) Để tính giá trị của B khi x = 9, ta thay x = 9 vào biểu thức B: B = (x - 5)/(x + 2) - 5/(x + 2) = (9 - 5)/(9 + 2) - 5/(9 + 2) = 4/11 - 5/11 = -1/11
Vậy giá trị của B khi x = 9 là -1/11.
b) Để rút gọn biểu thức P = A.B, ta nhân các thành phần tương ứng của A và B: P = (x^2 + 3x)/(x^2 - 25 + 1) * (x - 5)/(x + 2) = (x(x + 3))/(x^2 - 24) * (x - 5)/(x + 2) = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2)
Vậy biểu thức P được rút gọn thành P = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2).
c) Để tìm giá trị của x khi P > 13 với x > -2, ta giải phương trình: (x(x + 3)(x - 5))/(x^2 - 24)(x + 2) > 13
Cho 2 biểu thức
A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}-1}\) - \(\dfrac{\sqrt{x}+5}{x-1}\) với x ≥ 0, x ≠ 1
a, CM B= \(\dfrac{2}{\sqrt{x}+1}\)
b, Tìm tất cả giá trị của x để biểu thức P=2AB + \(\sqrt{x}\) MIN
Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)
b.
\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)
Áp dụng BĐT Cô-si:
$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$
Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$
Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\) với \(x\ge0,x\ne25\).
Biểu thức A sau khi rút gọn là: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
1) Tìm các giá trị của x để A = \(\dfrac{2\sqrt{x}}{3}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)
Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:
\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)
\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)
\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)
\(\Leftrightarrow2x+7\sqrt{x}+15=0\)
Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))
nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)
#\(Toru\)
\(\text{Cho biểu thức :B= ( \dfrac{15-\sqrt{x}}{x-25}+ \dfrac{2}{\sqrt{x}+5})\times(\dfrac{\sqrt{x\:-5}}{\sqrt{x\:+1}}) (với x\ge0;x\ne25 ) a) Rút gọn biểu thức b) Tìm giá trị của để }\)
Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) và B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-5}-\dfrac{8\sqrt{x}+20}{x-25}\) với \(x\ge0;x\ne25\)
c) Biểu thức B sau khi thu gọn được B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\). Tìm các giá trị của x để M = \(\dfrac{A}{B}\) nhận giá trị nguyên lớn nhất
c,M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) : \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\)
M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\)
M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)
M = 1 - \(\dfrac{7}{\sqrt{x}+3}\)
M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)
⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3 = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16
Mnguyên(max) = 1 - 1 = 0 xảy ra khi \(x\) = 16
Cho biểu thức $P=\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{2 \sqrt{x}}{\sqrt{x}-5}-\dfrac{3 x+25}{x-25}$, với $x \geq 0, x \neq 25$.
1. Rút gọn biểu thức $P$.
2. Tìm các giá trị của $x$ để $P=\dfrac{5}{7}$.
√x /√x +5 +2√x/√x -5 -3x +25/x-25 =√x(√x-5)/(√x+5)(√x -5) +2√x (√x +5)/(√x+5)(√x -5) - (3x+25)/(√x+5)(√x -5)=x-5√x +3√x +7√x +3x+25/(√x+5)(√x -5)= 4x +5√x +25
Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\) với \(x\ge0,x\ne25\).
Biểu thức A sau khi rút gọn là: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
2) Tìm giá trị nhỏ nhất của A
2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)
\(=1-\dfrac{10}{\sqrt{x}+5}\)
\(\sqrt{x}+5>=5\forall x\)
=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)
=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)
=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)
Dấu '=' xảy ra khi x=0
Vậy: \(A_{min}=-1\) khi x=0
Câu 2:Cho biểu thức P=\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)(với x >0,x khác 1)
a)Rút gọn biểu thức P
b)Tính giá trị của biểu thức P khi 2\(\sqrt{x+1=5}\)
c)Tìm các giá trị của x để P >\(\dfrac{1}{2}\)
Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(=\dfrac{x-1}{x}\)
b) Sửa đề: \(2\sqrt{x+1}=5\)
Ta có: \(2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)
\(\Leftrightarrow x+1=\dfrac{25}{4}\)
hay \(x=\dfrac{21}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:
\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)
Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)
c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)
mà \(2x>0\forall x\) thỏa mãn ĐKXĐ
nen \(2\left(x-1\right)-x+1>0\)
\(\Leftrightarrow2x-2-x+1>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để \(P>\dfrac{1}{2}\) thì x>1