Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NK
Xem chi tiết
TL
12 tháng 11 2021 lúc 11:05

a)

x^2-16/25=0

x^2-4^2/5^2=0

=>x-4/5=0

x=0+4/5

 

x=0/5

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 9 2023 lúc 13:43

a) \(A=\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5};B=\dfrac{x-5}{x+2}\left(x\ne\pm5;-2\right)\)

Khi \(x=9\) thì :

\(B=\dfrac{9-5}{9+2}=\dfrac{4}{11}\)

b) \(P=A.B\)

\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{x^2-25}+\dfrac{1}{x+5}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+3x}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+4x-5}{\left(x+5\right)\left(x-5\right)}\right].\dfrac{x-5}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x^2+5x-x-5}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{x\left(x+5\right)-\left(x+5\right)}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\left[\dfrac{\left(x+5\right)\left(x-1\right)}{x+5}\right].\dfrac{1}{x+2}\)

\(\Leftrightarrow P=\dfrac{x-1}{x+2}\)

c) Theo đề bài để

\(P=\dfrac{x-1}{x+2}>\dfrac{1}{3}\left(x>-2\right)\)

\(\Leftrightarrow3\left(x-1\right)>x+2\)

\(\Leftrightarrow3x-3>x+2\)

\(\Leftrightarrow2x>5\)

\(\Leftrightarrow x>\dfrac{5}{2}\left(thỏa,đk:x>-2\right)\)

Bình luận (0)
H24
7 tháng 9 2023 lúc 13:38

a) Để tính giá trị của B khi x = 9, ta thay x = 9 vào biểu thức B: B = (x - 5)/(x + 2) - 5/(x + 2) = (9 - 5)/(9 + 2) - 5/(9 + 2) = 4/11 - 5/11 = -1/11

Vậy giá trị của B khi x = 9 là -1/11.

b) Để rút gọn biểu thức P = A.B, ta nhân các thành phần tương ứng của A và B: P = (x^2 + 3x)/(x^2 - 25 + 1) * (x - 5)/(x + 2) = (x(x + 3))/(x^2 - 24) * (x - 5)/(x + 2) = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2)

Vậy biểu thức P được rút gọn thành P = (x(x + 3)(x - 5))/(x^2 - 24)(x + 2).

c) Để tìm giá trị của x khi P > 13 với x > -2, ta giải phương trình: (x(x + 3)(x - 5))/(x^2 - 24)(x + 2) > 13

Bình luận (0)
TN
Xem chi tiết
AH
17 tháng 11 2021 lúc 23:49

Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)

b.

\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)

Áp dụng BĐT Cô-si:

$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$

Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$

Bình luận (0)
H24
Xem chi tiết
H24
27 tháng 9 2023 lúc 20:40

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)

Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:

\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)

\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)

\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)

\(\Leftrightarrow2x+7\sqrt{x}+15=0\) 

Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))

nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)

#\(Toru\)

Bình luận (0)
H24
Xem chi tiết
TA
Xem chi tiết
NH
17 tháng 6 2023 lúc 12:19

c,M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) :  \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)

 M = 1  - \(\dfrac{7}{\sqrt{x}+3}\) 

 M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)

⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3  = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16 

Mnguyên(max)  = 1 - 1 = 0 xảy ra khi \(x\) = 16

Bình luận (0)
TD
Xem chi tiết
TP
19 tháng 5 2022 lúc 21:02

csvc

Bình luận (0)
NA
7 tháng 10 2022 lúc 21:04

√x /√x +5 +2√x/√x -5 -3x +25/x-25 =√x(√x-5)/(√x+5)(√x -5) +2√x (√x +5)/(√x+5)(√x -5) - (3x+25)/(√x+5)(√x -5)=x-5√x +3√x +7√x +3x+25/(√x+5)(√x -5)= 4x +5√x +25

 

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 11 2023 lúc 12:04

2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)

\(=1-\dfrac{10}{\sqrt{x}+5}\)

\(\sqrt{x}+5>=5\forall x\)

=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: \(A_{min}=-1\) khi x=0

Bình luận (0)
HN
Xem chi tiết
NT
22 tháng 2 2021 lúc 20:06

Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(=\dfrac{x-1}{x}\)

b) Sửa đề: \(2\sqrt{x+1}=5\)

Ta có: \(2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)

\(\Leftrightarrow x+1=\dfrac{25}{4}\)

hay \(x=\dfrac{21}{4}\)(thỏa ĐK)

Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:

\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)

Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)

c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)

mà \(2x>0\forall x\) thỏa mãn ĐKXĐ

nen \(2\left(x-1\right)-x+1>0\)

\(\Leftrightarrow2x-2-x+1>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để \(P>\dfrac{1}{2}\) thì x>1

Bình luận (0)