Những câu hỏi liên quan
KK
Xem chi tiết
NN
11 tháng 2 2017 lúc 12:45

2x = 8y+1 <=> 2x = ( 23 )y+1 = 23y+3

=> x = 3y + 3 (1)

9y = 3x-9 <=> 32.y = 3x-9 

=> 2y = x - 9 => x = 2y + 9 (2)

Từ (1); (2) => 3y + 3 = 2y + 9

<=> 3y - 2y = 9 - 3=> y = 6

=> 2.6 = x - 9 <=> 12 = x - 9 => x = 21

=> x + y = 21 + 6 = 27

Bình luận (0)
H24
Xem chi tiết
VT
9 tháng 12 2016 lúc 9:12

\(2^x=2^{3\left(y+1\right)}\Rightarrow x=3y+3\)

\(3^{2y}\Rightarrow3^{x-9}\Rightarrow2y=x-9\Rightarrow x=2y+9\)

\(\Rightarrow3y+3=2y+9\Rightarrow y=6\Rightarrow x=21\Rightarrow x+y=27\)

Bình luận (0)
PD
9 tháng 12 2016 lúc 11:14

Ta có:\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)

\(\Rightarrow9^y=3^{x-9}\Rightarrow3^{2y}=3^{3y+3-9}\Rightarrow3^{2y}=3^{3y-6}\Rightarrow2y=3y-6\)

\(\Rightarrow2y-3y=-6\Rightarrow-y=-6\Rightarrow y=6\)

\(\Rightarrow x=6\cdot3+3=21\)

\(\Rightarrow x+y=21+6=27\)

Bình luận (0)
SK
Xem chi tiết
QL
Xem chi tiết
ND
5 tháng 6 2018 lúc 8:50

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\\ \Leftrightarrow\dfrac{x+y}{xy}+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\\ \Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\\ \Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}\right)=0\\ \)

Nếu x+y=0 => x=-y

Nếu

\(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}=0\\ \Rightarrow xz+yz+z^2+xy=0\\ \Rightarrow\left(x+z\right)\left(y+z\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-z\\y=-z\end{matrix}\right.\)

Tự thế vào :v

Bình luận (0)
NX
Xem chi tiết
CN
Xem chi tiết
NN
Xem chi tiết
PN
18 tháng 5 2017 lúc 8:26

ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\dfrac{xz+yz+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^8=\left(-y\right)^8\\y^9=\left(-z\right)^9\\z^{10}=\left(-x\right)^{10}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^8-y^8=0\\y^9+z^9=0\\x^{10}-z^{10}=0\end{matrix}\right.\)\(\Rightarrow\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)=0\)

\(\Rightarrow M=\dfrac{3}{4}\)

Bình luận (0)
CN
Xem chi tiết
NC
2 tháng 12 2017 lúc 0:33

Áp dụng Cauchy:

\(\left(x^2+1\right)\ge2\sqrt{x^2\cdot1}=2x\)(dấu = khi x=1)

\(\left(y^2+4\right)\ge2\sqrt{y^2\cdot4}=4y\)(dấu = khi y=2)

\(\left(z^2+9\right)\ge2\sqrt{z^2\cdot9}=6z\)(dấu = khi z=3)

\(\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge48xyz\)(dấu = khi x=1, y=2, z=3)

ĐK đề bài => x=1, y=2, z=3. Thay x, y, z vào tính được P.

Bình luận (0)
VM
Xem chi tiết
NL
30 tháng 7 2017 lúc 8:03

Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Ta có: x8 - y8 = (x + y)(x - y)(x2 + y2)(x4 + y4)

y9 + z9 = (y + z)(y8 - y7z + y6z2 - ... + z8)

z10 - x10 = (z + x)(z4 - z3x + z2x2 - zx3 + z4)(z5 - x5)

Vậy M = \(\dfrac{3}{4}\) + (x + y)(y + z)(z + x) = \(\dfrac{3}{4}\)

Bình luận (0)