Ôn tập chương 1: Căn bậc hai. Căn bậc ba

QL

Cho \(x,y,z\in R\) thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\). Hãy tính giá trị của biểu thức \(M=\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\).

ND
5 tháng 6 2018 lúc 8:50

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\\ \Leftrightarrow\dfrac{x+y}{xy}+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\\ \Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\\ \Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}\right)=0\\ \)

Nếu x+y=0 => x=-y

Nếu

\(\dfrac{1}{xy}+\dfrac{1}{xz+yz+z^2}=0\\ \Rightarrow xz+yz+z^2+xy=0\\ \Rightarrow\left(x+z\right)\left(y+z\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-z\\y=-z\end{matrix}\right.\)

Tự thế vào :v

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
TD
Xem chi tiết
BA
Xem chi tiết
VC
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
DV
Xem chi tiết
NA
Xem chi tiết
NM
Xem chi tiết