Cho (x+y)(x+z)(y+z)=144.
Tìm giá trị nhỏ nhất của :
P = 5(x2 + y2) + 2y2
Cho x,y,z là các số thực thoả mãn: (x+y)(x+z)(y+z)=144.
Tìm giá trị nhỏ nhất của :
P = 5(x2 + y2) + 2y2
có vấn đề j với mấy lời giải kia vậy ??? hôm qua bn đã hỏi nó r` mà !
Mk cảm thấy có vấn de khi áp dụng am-gm mà chưa biết dấu
Cho số phức z = x + y i ( x , y ∈ R ) thỏa mãn z - 2 + i = z + 2 + 5 i và biểu thức H = x 2 + y 2 - 3 y + 1 x 2 + y 2 + 2 x - 2 y + 2 x 2 + y 2 - 2 x - 4 y + 5 đạt giá trị nhỏ nhất. Giá trị của 2x + y bằng
A. -6
B. - 6 + 5
C. - 3 - 5
D. - 6 - 5
cho các số thực x, y ,z không âm thoả mãn : x2+y2+z2=1 .
Tìm giá tri nhỏ nhất và giá tri lớn nhất của \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(A\le\sqrt{3\left(x+y+y+z+z+x\right)}=\sqrt{6\left(x+y+z\right)}\le\sqrt{6.\sqrt{3\left(x^2+y^2+z^2\right)}}=\sqrt{6\sqrt{3}}\)
\(A_{max}=\sqrt{6\sqrt{3}}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Do \(x^2+y^2+z^2=1\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow x+y+z\ge x^2+y^2+z^2=1\)
\(A^2=2\left(x+y+z\right)+2\sqrt{\left(x+y\right)\left(x+z\right)}+2\sqrt{\left(x+y\right)\left(y+z\right)}+2\sqrt{\left(y+z\right)\left(z+x\right)}\)
\(A^2=2\left(x+y+z\right)+2\sqrt{x^2+xy+yz+zx}+2\sqrt{y^2+xy+yz+zx}+2\sqrt{z^2+xy+yz+zx}\)
\(A^2\ge2\left(x+y+z\right)+2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=4\left(x+y+z\right)\ge4\)
\(\Rightarrow A\ge2\)
\(A_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị
Cho 3 số thực dương x, y, z thỏa mãn: 1 x 2 + 1 y 2 + 1 z 2 = 1 . Tìm giá trị nhỏ nhất của biểu thức: P = y 2 z 2 x ( y 2 + z 2 ) + z 2 x 2 y ( z 2 + x 2 ) + x 2 y 2 z ( x 2 + y 2 )
Ta có:
P = 1 x ( 1 z 2 + 1 y 2 ) + 1 y ( 1 z 2 + 1 x 2 ) + 1 z ( 1 x 2 + 1 y 2 )
Đặt: 1 x = a ; 1 y = b ; 1 z = c thì a,b,c>0 và a2+b2+c2=1
P = a b 2 + c 2 + b c 2 + a 2 + c a 2 + b 2 = a 2 a ( 1 − a 2 ) + b 2 b ( 1 − b 2 ) + c 2 c ( 1 − c 2 )
Áp dụng bất đẳng thức Côsi cho 3 số dương ta có:
a 2 1 - a 2 2 = 1 2 .2 a 2 ( 1 − a 2 ) ( 1 − a 2 ) ≤ 1 2 2 a 2 + 1 − a 2 + 1 − a 2 3 = 4 27 = > a ( 1 − a 2 ) ≤ 2 3 3 < = > a 2 a ( 1 − a 2 ) ≥ 3 3 2 a 2 ( 1 )
Tương tự: b 2 b ( 1 − b 2 ) ≥ 3 3 2 b 2 ( 2 ) ; c 2 c ( 1 − c 2 ) ≥ 3 3 2 c 2 ( 3 )
Từ (1); (2); (3) ta có P ≥ 3 3 2 ( a 2 + b 2 + c 2 ) = 3 3 2
Đẳng thức xảy ra a = b = c = 1 3 h a y x = y = z = 3
Vậy giá trị nhỏ nhất của P là 3 3 2
cho các số thực x, y ,z không âm thoả mãn : x2+y2+z2=1 . tìm giá tri nhỏ nhất và giá tri lớn nhất của P = √ (x^2 + y^2) + √(y^2 + z^2) + √ (z^2 + x^2)
Cho các số thực x, y dương và thỏa mãn log 2 x 2 + y 2 3 xy + x 2 + 2 log 2 x 2 + 2 y 2 + 1 ≤ log 2 8 xy .Tìm giá trị nhỏ nhất của biểu thức P = 2 x 2 - xy + 2 y 2 2 xy - y 2 .
Cho z=x+yi với x , y ∈ ℝ là số phức thỏa mãn điều kiện z → + 2 - 3 i ≤ z + i - 2 ≤ 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 + y 2 + 8 x + 6 y . Tính M+m.
A. 60 + 2 10
B. 156 6 - 20 10 .
C. 60 - 2 10 .
D. 156 5 + 20 10
bài 1: cho các số dương x, y, z thỏa mãn x+y+z=1. Tìm min
a) A = x2+y2+z2
b) B = x2+y2+3z2
c) C=x2+2y2+3z2
d) D=x2+by2+cz2
Cho a, b, x, y, z là các số phức thỏa mãn: a 2 - 4 b = 16 + 2 i , x 2 + a x + b + z = 0 , y 2 + a y + b + z = 0 , x - y = 2 3 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của z . Tính M + m
A. M + m = 10
B. M + m = 28
C. M + m = 29
D. M + m = 6 3
Cho các số thực x,y thay đổi nhưng luôn thỏa mãn 3 x 2 - 2 x y - y 2 = 5 . Giá trị nhỏ nhất của biểu thức P : x 2 + x y + 2 y 2 thuộc khoảng nào sau đây?
A. (4;7)
B. - 2 ; 1
C. 1 ; 4
D. 7 ; 10