Cho biết 2x^2= a^2+b^2+c^2 và a+b=c
CHứng minh 2x^4=a^4+b^4+c^4
Chứng minh rằng:
A: a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=b(a-c)(a+c-b)^2
B: TÌm x biết :
(2x^2+x-2017)^2+4(x^2-5x-2016)^2=4(2x^2+x-2017)(x^2-5x-2016)
cho \(x^2=a^2+b^2+ab\) và a+b=c chứng minh \(2x^4=a^4+b^4+c^4\)
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+a^2b^2+2a^2b^2+2ab^3+2a^3b\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4ab^3+4a^3b\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+2b^2.2ab+2.2ab.a^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+b^2+2ab\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
Cho x2=a2+b2+ab và a+b=c Chứng minh rằng : 2x4=a4+b4+c4
Bài 1 : Tìm thương Q và dư R sao cho A= B.Q+R biết ;
a) A = \(x^4+3x^3+2x^2-x-4\) và B = \(x^2-2x+3\)
b) A = \(2x^3-3x^2+6x-4\) và B = \(x^2-x+3\)
c) A = \(2x^4+x^3+3x^2+4x+9\) và B = \(x^2+1\)
d) A = \(2x^3-11x^2+19x-6\) và B = \(x^2-3x+1\)
c) A= \(2x^4-x^3-x^2-x+1\) và B = \(x^2+1\)
1) Xác định a và b để cho P=x^4+2x^3+ax^2+2x+b là bình phương cuả một đa thức
2) Cho x=a+1. Chứng minh rằng: x^16-a^16=(x^8+a^8)(x^2+a^2)(x+a)
4) Cho a+b+c=0. Chứng minh rằng: 2(a^4+b^4+c^4)=(a^2+b^2+c^2)^2
5) Với giá trị nào của a và b thì đa thức:
f(x)=x^4-3x^3+3x^2+ax+b chia hết cho đa thức g(x)=x^2-3x+4. Tìm đa thức thương.
6) Tìm x ; y ; z trong đẳng thức: x^2+4y^2+9z^2+2x+4y+6z+3=0 (pt)
7) Với a ; b ; c là độ dài 3 cạch của một tam giác. Chứng minh rằng biểu thức M=4b^2c^2-(b^2+c^2-a^2)^2>0
8) Chứng minh rằng (a-b) chia hết cho 6 <=> (a^3+b^3) chia hết cho 6
Cho \(x^2=a^2+b^2+ab\) và \(a+b=c\). Chứng minh\(2x^4=a^4+b^4+c^4\)
Bài 1:Tìm x biết:
1) (x-3)/7=y-5/5=z+7/3 và x+y+z=43
2) x+11/3=y+2/2=z+3/4 và x-y+z=2x
3) x-1/3=y-2/4=z+7/5 và x+y-z=8
4) x+1/2=y+3/4=z+5/6 và 2x+3y+4z=9
Bài 2: Cho a+b/a-b = c+a/c-a Chứng Minh
a^2= b.c
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
a) x=949/27
y=755/27
z=61/9
các bạn xem giúp mik đúng chx ạ, mik đặt là k
Cho \(x^2=a^2+b^2+ab\) và c=a+b
chứng minh rằng \(2x^4=a^4+b^4+c^4\)
Ta có :
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+3a^2b^2+2a^3b+2ab^3+b^4\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a^2+2ab+b^2\right)^2\right]\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
cho x2 = a2 + b2 và a+b=c. Chứng minh: 2x2 = a4 + b4 + c4
a4 + b4 + c4 = (a2 + b2)2 - 2.a2 .b2 + (a+ b)4 = (x2)2 - 2a2.b2 + (a2 + b2 + 2ab)2
= x4 - 2a2b2 + (a2 + b2)2 + 4a2b2 + 4ab.(a2 + b2) = x4 + x4 + 2a2.b2 + 4ab.x2 = 2x4 + 4x2.ab + 2(ab)2
= 2. (x4 + 2x2.ab + (ab)2) = 2. (x2 + ab)2
Vậy a4 + b4 + c4 = 2.(x2 + ab)2. Em xem lại đề bài nhé