Những câu hỏi liên quan
PN
Xem chi tiết
NV
Xem chi tiết
NT
17 tháng 5 2016 lúc 15:24

Ai trả lời câu này giúp em và nhỏ Vi với

Bình luận (0)
CH
17 tháng 5 2016 lúc 17:16

a.\(6x^2-\left(2x-3\right)\left(3x+2\right)-1=0\Leftrightarrow6x^2-\left(6x^2-2x-6\right)-1=0\)

\(\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)

b. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)=0\Leftrightarrow x^2+4x-21-\left(x^2+4x-5\right)=0\)

\(\Leftrightarrow-16=0\)

Vậy không có x thỏa mãn.

Bình luận (0)
DA
Xem chi tiết
TN
14 tháng 3 2023 lúc 21:50

\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+6y-1}{5x}\left(1\right)\)

Từ `2` tỉ số đầu , ta áp dụng t/c của DTSBN , ta đc :

\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+3+3y-2}{3+6}=\dfrac{2x+3y+1}{9}\left(2\right)\)

Từ `(1);(2)=>`\(\dfrac{2x+6y-1}{5x}=\dfrac{2x+3y+1}{9}\left(3\right)\)

Từ `(3)` ta xét `2` trường hợp :

+, Nếu `2x+3y+1 \ne  0` thì :

`(3)=>5x=9=>x=9/5`

Thay `x=9/5` vào \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}\), ta đc :

\(\dfrac{2\cdot\dfrac{9}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{\dfrac{18}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{11}{5}=\dfrac{3y-2}{6}\\ 3y-2=6\cdot\dfrac{11}{5}\\ 3y-2=\dfrac{66}{5}\\ 3y=\dfrac{76}{5}\\ y=\dfrac{76}{16}\)

+, Nếu `2x+3y+1=0` thì :

`(1)=>` \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=0\\ \Rightarrow\left\{{}\begin{matrix}2x+3=0\\3y-2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Bình luận (0)
PA
Xem chi tiết
TN
5 tháng 1 2017 lúc 12:53

\(5\left(x+2\right)-x^2-2x=0\)

\(\Rightarrow5\left(x+2\right)-\left(x^2+2x\right)=0\)

\(\Rightarrow5\left(x+2\right)-x\left(x+2\right)=0\)

\(\Rightarrow\left(5-x\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5-x=0\\x+2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

Bình luận (0)
TN
5 tháng 1 2017 lúc 12:54

khó phết

Bình luận (0)
H24
Xem chi tiết
NM
5 tháng 9 2021 lúc 11:00

\(a,P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\left(x\ge0;x\ne9\right)\\ P=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ P=\dfrac{\left(x+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+8}{\sqrt{x}+1}\)

\(b,x=14-6\sqrt{5}=\left(3-\sqrt{5}\right)^2\)

Thay vào P:

\(P=\dfrac{14-6\sqrt{5}+8}{\sqrt{\left(3-\sqrt{5}\right)^2}+1}=\dfrac{22-6\sqrt{5}}{4-\sqrt{5}}=\dfrac{\left(4+\sqrt{5}\right)\left(22-6\sqrt{5}\right)}{11}=\dfrac{55-2\sqrt{5}}{11}\)

 

Bình luận (0)
LL
5 tháng 9 2021 lúc 11:04

a) \(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\left(đk:x\ge0,x\ne9\right)\)

\(=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3x+x\sqrt{x}+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x\left(\sqrt{x}-3\right)+8\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+8}{\sqrt{x}+1}\)

b) \(P=\dfrac{x+8}{\sqrt{x}+1}=\dfrac{14-6\sqrt{5}+8}{\sqrt{14-6\sqrt{5}}+1}=\dfrac{22-6\sqrt{5}}{\sqrt{\left(3-\sqrt{5}\right)^2}+1}=\dfrac{22-6\sqrt{5}}{3-\sqrt{5}+1}=\dfrac{22-6\sqrt{5}}{4-\sqrt{5}}\)

Bình luận (0)
HP
Xem chi tiết
AN
10 tháng 12 2016 lúc 20:58

Để mình chứng minh là đề bạn sai nhé

Điều kiện xác định

\(\hept{\begin{cases}2x-1\ge0\\2x-3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0,5\\x\le0\end{cases}}\)vô lý

Từ điều kiện xác định đã thấy đề sai rồi

Bình luận (0)
AN
10 tháng 12 2016 lúc 20:46

Đề sai rồi. Kiểm tra lại đi bạn

Bình luận (0)
HP
10 tháng 12 2016 lúc 20:54

đề mình ghi đúng rồi mà bạn . 

Bình luận (0)
NV
Xem chi tiết
TN
17 tháng 5 2016 lúc 18:51

c)3(2x-1)-5(x-3)+6(3x-4)=24

<=>6x-3-5x-15+18x-24=24

<=>19x-12=24

<=>19x=36

<=>x=\(\frac{36}{19}\)

d)2x(5-3x)+2x(3x-5)-3(x-7)=3

<=>10x-6x2+6x2-10x-3x-21=3

<=>-3(x-7)=3

<=>21-3x=3

<=>-3x=-18

<=>x=6

Bình luận (0)
TH
Xem chi tiết
NL
23 tháng 4 2022 lúc 22:33

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

Bình luận (1)
KD
Xem chi tiết
NH
27 tháng 4 2018 lúc 20:11

Đề bài bạn kìa

Bình luận (0)
KD
3 tháng 5 2018 lúc 19:25

tìm GTNN nha m.n 

Bình luận (0)
NH
4 tháng 5 2018 lúc 15:50

Ta có 2M=\(2x^2+2y^2-2xy-4x-4y+4\)

               =\(\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)-4\)

               =\(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-4\)

DO  \(\hept{\begin{cases}\left(y-2\right)^2\ge0\\\left(x-2\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}}\)NÊN GTNN của 2M là -4=>GTNN CỦA M=-2

ĐẤU BẰNG XẢY RA KHI VÀ CHỈ KHI \(\hept{\begin{cases}\left(y-2\right)^2=0\\\left(x-2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y-2=0\\x-2=0\\x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}\)

VẬY .......

Bình luận (0)