Chứng minh đẳng thức
-a.(b-c)- b.(c-a)=-c.(b-a)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CHỨNG MINH ĐẲNG THỨC -A(B-C)-B.(C-A)=-C(B-A)
-AB + AC - BC + BA = - CB + CA
AC - BC = CA - CB ( ĐCT)
Chứng minh đẳng thức:
-(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
ta có: -(-a+b+c)+(b+c-1)= a-b-c+b+c-1=a-1 (1)
(b-c+6)-(7-a+b)+c= b-c+6-7+a-b+c=a-1 (2)
Từ (1),(2) => -(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
Vế trái = -(-a+b+c)+(b+c-1)
= a-b-c+b+c-1
= a+(-b+b)+(-c+c)-1
= a+0+0-1
= a-1
Vế phải = (b-c+6)-(7-a+b)+c
= b-c+6-7+a-b+c
= (b-b)+(-c+c)+(6-7)+a
= 0+0-1+a
= a-1
- Vậy -(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
a)
Có: -(-a + b + c) + (b + c - 1) = a - b - c + b + c - 1
= a - 1
Lại có: (b - c + 6) - (7 - a + b) + c = b - c + 6 - 7 + a - b + c
= a - 1
Vì a - 1 = a - 1
nên -(-a + b + c) + (b + c - 1) = (b - c + 6) - (7 - a + b) + c (đpcm)
chứng minh đẳng thức:
-(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
VT=\(-\left(-a+b+c\right)+\left(b+c-1\right)\)
\(=a-b-c+b+c-1\)
=a-1
\(VP=\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(=b-c+6-7+a-b+c\)
=a-1
=>VT=VP
=>\(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
chứng minh đẳng thức sau: a(b+c) - b(a-c) = (a+b)c ; a, b, c thuộc Z
a(b+c) - b(a-c) = ab + ac - ab + bc = ac + bc = c(a+b ) (d9pcm )
Ta có :
\(a\left(b+c\right)-b\left(a-c\right)\)
\(=a.b+a.c-b.a+b.c\)
\(=\left(a.b-b.a\right)+\left(a.c+b.c\right)\)
\(=a.c+b.c=\left(a+b\right).c\)
Vậy \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\left(ĐPCM\right)\)
Ủng hộ mk nha !!! ^_^
chứng minh đẳng thức:
(a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)=2b
(a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)
= a+b-c-a+b-c+b+c-a-b+a+c
=(a-a-a+a)+(b+b+b-b)+(-c-c+c+c)
= 0 + ( b+b) + 0
= 2b
xong oy đó , nhớ mink đấy
(a+b-c)-(a-b+c)+(b+c-a)-(b-a-c)=2b
=> a+b-c-a+a-c+b+c-a-b+a+c=2b
=> b+c+a+c=2b
hình như đề sai bạn ạ
chứng minh đẳng thức:
a-(b-c)=(a-b)+c=(a+c)-b
Phá ngoặc
a - (b - c) = a - b + c = (a - b) + c => ĐPCM ở V1
= (a + c) - b => ĐPCM ở V2
Từ V1 và V2 => ĐPCM ở 2 vế
a-(b-c)=a-b+c=(a-b)+c=(a+c)-b
=>đẳng thức đc chứng minh
Chứng minh đẳng thức:
-a (b – c ) - b. ( c - a) = - c (b - a)
https://olm.vn/hoi-dap/detail/187444543773.html
Tham khảo link này nhé ( Ở mục câu hỏi tương tự á)
Bài làm
Biến đổi vế trái, ta đc:
Vế trái = -a( b - c ) - b( c - a )
= -ab + ac - bc + ab
= ( ab - ab ) + ( ac - bc )
= ac - bc
= -bc + ac
=-c( b - a ) = vế phải
Vậy -a( b - c ) - b( c - a ) = -c( b - a ) ( đpcm )
chứng minh đẳng thức:
-a.(b-c)-b.(c-a) = -c(b-a)
-a(b-c)-b(c-a)=-c(b-a)
-ab-(-ac)-b.c-ba=-cb-(-ca)
ac-bc=-cb+ca
ac-ca=-cb+bc
0=0
chứng minh đẳng thức a(b-c)-a(b+d)=-a(c+d)
ta có:a(b−c)−a(b+d)=−a(c+d)
VT(vế trái)=a(b−c)−a(b+d)
=ab−ac−ab−ad
=(ab−ab)−ac−ad
=0−a(c+d)
=−a(c+d)=VP(vế phải)
\(a\left(b-c\right)-a\left(b+d\right)\)
\(=a\left(b-c-b-d\right)\)
\(=a\left(-c-d\right)\)
\(=-a\left(c+d\right)\left(dpcm\right)\)
Ta có: a(b-c)-a(b+d)
=ab-ac-ab-ad
=-ac-ad=-(ac+ad)=-a(c+d)
Vì -a(c+d)=-a(c+d) nên a(b-c)-a(b+d)=-a(c+d)