Những câu hỏi liên quan
NV
Xem chi tiết
NT
31 tháng 10 2021 lúc 11:03

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Bình luận (0)
NM
31 tháng 10 2021 lúc 11:05

\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

Bình luận (0)
AV
Xem chi tiết
NT
7 tháng 7 2021 lúc 14:24

1) Ta có: P=4

nên \(x-2\sqrt{x}+22=4\sqrt{x}+12\)

\(\Leftrightarrow x-6\sqrt{x}+10=0\)(Vô lý)

3) Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}-2\left(\sqrt{2}-1\right)+22}{\sqrt{2}-1+3}\)

\(=\dfrac{3-2\sqrt{2}-2\sqrt{2}+2+22}{2+\sqrt{2}}\)

\(=\dfrac{27-4\sqrt{2}}{2+\sqrt{2}}\)

\(=\dfrac{\left(27-4\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\sqrt{2}}\)

\(=\dfrac{\left(27\sqrt{2}-8\right)\left(\sqrt{2}-1\right)}{2}\)

\(=\dfrac{54-27\sqrt{2}-8\sqrt{2}+8}{2}\)

\(=\dfrac{64-35\sqrt{2}}{2}\)

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 11 2023 lúc 12:04

2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)

\(=1-\dfrac{10}{\sqrt{x}+5}\)

\(\sqrt{x}+5>=5\forall x\)

=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: \(A_{min}=-1\) khi x=0

Bình luận (0)
H24
Xem chi tiết
H24
27 tháng 9 2023 lúc 20:40

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)

Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:

\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)

\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)

\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)

\(\Leftrightarrow2x+7\sqrt{x}+15=0\) 

Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))

nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)

#\(Toru\)

Bình luận (0)
H24
Xem chi tiết
H24
17 tháng 5 2021 lúc 21:51

`A)đk:x>=0,x ne 25`

`A=9=>A=(3+2)/(3-5)=-5/2`

`B)B=(3sqrtx-15+20-2sqrtx)/(x-25)`

`=(sqrtx+5)/(x-25)`

`=1/(sqrtx-5)`

`A=B.|x-4|`

`<=>A/B=|x-4|`

`<=>\sqrtx+2=|x-4|`

`<=>\sqrtx+2=(sqrtx+2)|sqrtx-2|`

`<=>|sqrtx-2|=1`

`+)sqrtx-2=1<=>x=9(tm)`

`+)sqrtx-2=-1<=>x=1(tm)`

Vậy `S={1,9}`

Bình luận (1)
TK
17 tháng 5 2021 lúc 21:51

a, Thay x=9 vào biểu thức A ta có

\(A=\dfrac{\sqrt{9}+2}{\sqrt{9}-5}\)

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=-2,5\)

Vậy A =-2,5 khi x=9

Bình luận (0)
LL
17 tháng 5 2021 lúc 21:52

a. A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

=\(\dfrac{\sqrt{9}+2}{\sqrt{9}-5}=\dfrac{-5}{2}\)

Bình luận (0)
TA
Xem chi tiết
NH
17 tháng 6 2023 lúc 12:19

c,M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) :  \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)

 M = 1  - \(\dfrac{7}{\sqrt{x}+3}\) 

 M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)

⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3  = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16 

Mnguyên(max)  = 1 - 1 = 0 xảy ra khi \(x\) = 16

Bình luận (0)
TP
Xem chi tiết
NM
7 tháng 12 2021 lúc 7:14

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

Bình luận (1)
MB
Xem chi tiết
NT
4 tháng 9 2022 lúc 14:38

Bài 1: 

a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)

Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)

 

Bình luận (0)
H24
Xem chi tiết
TM
26 tháng 6 2023 lúc 10:40

Ta có : \(P=3A+2B\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{3}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+3}{\sqrt{x}+2}.\)

\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+2\right)-1}{\sqrt{x}+2}=2-\dfrac{1}{\sqrt{x}+2}\)

Do \(x\ge0\Rightarrow\sqrt{x}+2\ge0\)

\(\Rightarrow-\dfrac{1}{\sqrt{x}+2}\ge-1\)

\(\Rightarrow P=2-\dfrac{1}{\sqrt{x}+2}\ge-1+2=1.\)

Vậy : \(MinP=1.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=0.\)

Bình luận (0)