Những câu hỏi liên quan
NT
Xem chi tiết
NV
Xem chi tiết
NT
22 tháng 3 2021 lúc 13:42

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

Bình luận (0)
LQ
Xem chi tiết
PB
Xem chi tiết
DM
9 tháng 5 2019 lúc 20:38

\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)

Bình luận (0)
MT
Xem chi tiết
NC
4 tháng 1 2018 lúc 22:07

Ta có:

A=(1-1/2).(1-1/3).(1-1/4)...(1-1/2016)

  =1/2.2/3.3/4...2015/2016

  =1.2.3.4....2014.2015/2.3.4....2015.2016(Giống nhau bạn gạch đi)

  =1/2016

Vậy A=1/2016

K cho mình nha :D

Bình luận (0)
DD
Xem chi tiết
TK
Xem chi tiết
NA
Xem chi tiết
H24
18 tháng 8 2016 lúc 20:42

A=\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{2016^2-1}{2016^2}\)

A=\(\frac{\left(2+1\right)\left(2-1\right)}{2^2}.\frac{\left(3+1\right)\left(3-1\right)}{3^2}......\frac{\left(2016+1\right)\left(2016-1\right)}{2016^2}\)

A=\(\frac{3.4......2017}{2.3....2016}.\frac{1.2...2015}{2.3...2016}\)

A=\(\frac{2017}{2}.\frac{1}{2016}\)

A=\(\frac{2017}{2.2106}>\frac{1}{2}\)

Vậy A\(>\frac{1}{2}\)

Bình luận (0)
NV
Xem chi tiết
NT
22 tháng 3 2021 lúc 13:42

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

Bình luận (0)
TP
Xem chi tiết
VT
8 tháng 9 2016 lúc 8:40

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{3.4}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{2015}{2017}\right)}\)

\(\Rightarrow A=2017\)

Bình luận (0)
VT
8 tháng 9 2016 lúc 8:37

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{2}{2016.2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+\frac{2015}{2017}}\)

\(A=2017\)

Bình luận (0)
VT
8 tháng 9 2016 lúc 8:40

Sao ra 2 cái dữ nè

Bình luận (1)