Ôn tập toán 6

TP

Tính :

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

VT
8 tháng 9 2016 lúc 8:40

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{3.4}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{2015}{2017}\right)}\)

\(\Rightarrow A=2017\)

Bình luận (0)
VT
8 tháng 9 2016 lúc 8:37

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{2}{2016.2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+\frac{2015}{2017}}\)

\(A=2017\)

Bình luận (0)
VT
8 tháng 9 2016 lúc 8:40

Sao ra 2 cái dữ nè

Bình luận (1)

Các câu hỏi tương tự
TD
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
TC
Xem chi tiết
LK
Xem chi tiết
TD
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết