Chứng minh rằng: với ∀ số tự nhiên n ta có: 7.52n+12.6n ⋮19
2. CMR: 7.52n+12.6n chia hết cho 19
*Sử dụng đồng dư thức
Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)
\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)
Do \(19.6^n⋮19\Rightarrow A⋮19\)
A = 7.52n + 12.6n
A = 7.(52)n + 12.6n
A = 7.25n + 12.6n
25 \(\equiv\) 6 (mod 19)
25n \(\equiv\) 6n (mod 19)
7 \(\equiv\) - 12 (mod 19)
⇒ 7.25n \(\equiv\) -12.6n (mod 19)
⇒ 7.25n -( -12.6n) ⋮ 19
⇒ 7.25n + 12.6n ⋮ 19
Ta có:
\(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Vì \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)
\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv0\left(mod19\right)\)
Vậy ....
Chứng minh rằng: với ∀ số tự nhiên n ta có: B= \(4^{n+1}+60^n-4⋮36\)
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta luôn có: 2 n + 1 > 2 n + 3 (*)
* Với n = 2 ta có 2 2 + 1 > 2.2 + 3 ⇔ 8 > 7 (đúng).
Vậy (*) đúng với n= 2 .
* Giả sử với n = k , k ≥ 2 thì (*) đúng, có nghĩa ta có: 2 k + 1 > 2 k + 3 (1).
* Ta phải chứng minh (*) đúng với n = k + 1, có nghĩa ta phải chứng minh:
2 k + 2 > 2 ( k + 1 ) + 3
Thật vậy, nhân hai vế của (1) với 2 ta được:
2.2 k + 1 > 2 2 k + 3 ⇔ 2 k + 2 > 4 k + 6 > 2 k + 5 .
( vì 4k + 6 > 4k + 5 > 2k + 5 )
Hay 2 k + 2 > 2 ( k + 1 ) + 3
Vậy (*) đúng với n = k + 1 .
Do đó theo nguyên lí quy nạp, (*) đúng với mọi số nguyên dương ≥ 2
Chứng minh rằng với mọi số tự nhiên n thì ta có : n ( n+1) (13n+17) chia hết cho 6
Lời giải:
Vì $n, n+1$ là hai số tự nhiên liên tiếp nên trong đó sẽ tồn tại 1 số chẵn và 1 số lẻ.
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow n(n+1)(13n+17)\vdots 2(*)$
Mặt khác:
Nếu $n$ chia hết cho 3 thì $n(n+1)(13n+7)\vdots 3$
Nếu $n$ chia 3 dư $1$: Đặt $n=3k+1$ thì:
$13n+17=13(3k+1)+17=39k+30=3(13k+10)\vdots 3$
$\Rightarrow n(n+10)(13n+17)\vdots 3$
Nếu $n$ chia 3 dư $2$. Đặt $n=3k+2$ thì:
$n+1=3k+3=3(k+1)\vdots 3$
$\Rightarrow n(n+1)(13n+17)\vdots 3$
Vậy $n(n+1)(13n+17)\vdots 3$ với mọi $n$ tự nhiên $(**)$
Từ $(*); (**)\Rightarrow n(n+1)(13n+17)\vdots 6$.
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có bất đẳng thức: 3 n > 3 n + 1
Chứng minh: 3n > 3n + 1 (1)
+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).
+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.
Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1
Thật vậy, ta có:
3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)
= 9k + 3
= 3k + 3 + 6k
= 3.(k + 1) + 6k
> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)
⇒ (1) đúng với n = k + 1.
Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.
Chứng minh rằng các phân số sau tối giản với n tự nhiên:
3n+2/5n+3
Chứng minh rằng các phân số sau có giá trị tự nhiên:
a) 10 mũ 2002 +2 /3
b) 10 mũ 2003 +8 /9
Chứng minh rằng
a) 1717/2929=17171717/29292929
b) 3210-34/4170-41 = 6420-68 / 8340-82
Tìm số tự nhiên n để các phân số sau tối giản
a) 2n+3 / 4n+1
b) 3n+2 /7n+1
Tìm số tự nhiên n để n+3 / 2n-2 ; n+19 / n+6 có giá trị tự nhiên
a) Chứng minh rằng với mọi số tự nhiên N, ta có (n + 2). (n+ 7) chia hết cho 3
Chứng minh rằng với mọi số tự nhiên n ta có:
n^2-n chia hết cho 2
\(n^2-n=\left(n-1\right)n⋮2\)
Vậy \(n^2-n\) chia hết cho 2
a,Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có:
1²+2²+3²+...+n²=n.(n+1).(2n+1)/6
b,Chứng minh rằng
A=1.5+2.6+3.7+...+2023.2027
chia hết các số 11;23 và 2023
c,Tìm tất cả các số tự nhiên n (1 ≤ n ≤ 2000) để biểu thức B=1.3+2.3+...+n.(n+2) chia hết cho 2027