Những câu hỏi liên quan
CH
Xem chi tiết
NL
8 tháng 1 2024 lúc 13:35

Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

Do \(19.6^n⋮19\Rightarrow A⋮19\)

Bình luận (0)
NH
8 tháng 1 2024 lúc 13:22

A = 7.52n + 12.6n

A = 7.(52)n + 12.6n

A = 7.25n + 12.6n

25  \(\equiv\) 6 (mod 19)

25n \(\equiv\) 6n (mod 19)

7    \(\equiv\) - 12 (mod 19)

⇒ 7.25n \(\equiv\) -12.6n (mod 19)

⇒ 7.25n -( -12.6n) ⋮ 19

⇒ 7.25n + 12.6n   ⋮ 19

 

 

Bình luận (0)
MP
8 tháng 1 2024 lúc 19:13

Ta có:

\(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Vì \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv0\left(mod19\right)\)

Vậy ....

Bình luận (0)
NL
Xem chi tiết
AH
12 tháng 8 2021 lúc 0:37

Đề sai với $n=0$ và $n=2$

Bình luận (2)
PB
Xem chi tiết
CT
13 tháng 4 2018 lúc 16:54

* Với n = 2 ta có 2 2 + 1 > 2.2 + 3 ⇔ 8 > 7  (đúng).

Vậy (*) đúng với n= 2 .

 * Giả sử với n = k , k ≥ 2  thì (*) đúng, có nghĩa ta có: 2 k + 1   >     2 k   +   3 (1).

* Ta phải chứng minh (*) đúng với n = k + 1, có nghĩa ta phải chứng minh:

2 k + 2 > 2 ( k + 1 ) + 3

Thật vậy, nhân hai vế của (1) với 2 ta được:

2.2 k + 1 > 2 2 k + 3 ⇔ 2 k + 2 > 4 k + 6 > 2 k + 5 .

 ( vì 4k + 6 >  4k +  5 >  2k +  5 )

Hay 2 k + 2   >   2   ( k + 1 ) +     3

Vậy  (*) đúng với n = k + 1 .

Do đó theo nguyên lí quy nạp, (*) đúng với mọi số nguyên dương  ≥ 2

Bình luận (0)
H24
Xem chi tiết
AH
10 tháng 12 2023 lúc 17:00

Lời giải:
Vì $n, n+1$ là hai số tự nhiên liên tiếp nên trong đó sẽ tồn tại 1 số chẵn và 1 số lẻ.

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow n(n+1)(13n+17)\vdots 2(*)$

Mặt khác:
Nếu $n$ chia hết cho 3 thì $n(n+1)(13n+7)\vdots 3$

Nếu $n$ chia 3 dư $1$: Đặt $n=3k+1$ thì:

$13n+17=13(3k+1)+17=39k+30=3(13k+10)\vdots 3$

$\Rightarrow n(n+10)(13n+17)\vdots 3$

Nếu $n$ chia 3 dư $2$. Đặt $n=3k+2$ thì:

$n+1=3k+3=3(k+1)\vdots 3$

$\Rightarrow n(n+1)(13n+17)\vdots 3$

Vậy $n(n+1)(13n+17)\vdots 3$ với mọi $n$ tự nhiên $(**)$

Từ $(*); (**)\Rightarrow n(n+1)(13n+17)\vdots 6$.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 10 2017 lúc 15:42

Chứng minh: 3n > 3n + 1 (1)

+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).

+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.

Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1

Thật vậy, ta có:

3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)

= 9k + 3

= 3k + 3 + 6k

= 3.(k + 1) + 6k

> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)

⇒ (1) đúng với n = k + 1.

Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.

Bình luận (0)
NH
Xem chi tiết
PA
Xem chi tiết
NC
Xem chi tiết
NL
11 tháng 8 2021 lúc 21:56

\(n^2-n=\left(n-1\right)n⋮2\)

Vậy \(n^2-n\) chia hết cho 2

 

Bình luận (0)
PT
Xem chi tiết