PB

Chứng minh rằng với mọi số tự nhiên n   ≥   2 , ta có bất đẳng thức: 3 n   >   3 n   +   1

CT
20 tháng 10 2017 lúc 15:42

Chứng minh: 3n > 3n + 1 (1)

+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).

+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.

Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1

Thật vậy, ta có:

3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)

= 9k + 3

= 3k + 3 + 6k

= 3.(k + 1) + 6k

> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)

⇒ (1) đúng với n = k + 1.

Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết