Những câu hỏi liên quan
NA
Xem chi tiết
QF
Xem chi tiết
LG
16 tháng 7 2018 lúc 14:50

5xy+5x+y=5

5xy-5x-5+y=0

5(xy-x-1)+y=0

=>5(xy-x-1)=0 và y=0

=>xy-x-1=0 và y =0

thay y=0 vào xy-x-1=0

ta có: x.0-x-1=0 =>x=-1

vậy x=-1,y=0

hình như sai,ta cx ko rõ,nếu sai thì xin lỗi nhóe 

Bình luận (0)
TA
Xem chi tiết
H24
Xem chi tiết
AH
10 tháng 2 2024 lúc 23:21

** Bổ sung điều kiện $x,y$ là số nguyên.

a/

$(5x-1)(y+1)=4$
Với $x,y$ nguyên thì $5x-1, y+1$ nguyên. Mà tích của chúng bằng 4 nên ta có các trường hợp sau:

TH1:  $5x-1=1, y+1=4\Rightarrow x=\frac{2}{5}$ (loại) 

TH2:  $5x-1=-1, y+1=-4\Rightarrow x=0; y=-5$

TH3:  $5x-1=2, y+1=2\Rightarrow x=\frac{3}{5}$ (loại) 

TH4: $5x-1=-2, y+1=-2\Rightarrow x=\frac{-1}{5}$ (loại)

TH5: $5x-1=4, y+1=1\Rightarrow x=1; y=0$

TH6: $5x-1=-4; y+1=-1\Rightarrow x=\frac{-3}{5}$ (loại)

Vậy......

Bình luận (0)
AH
10 tháng 2 2024 lúc 23:28

b/

$xy-7y+5x=0$

$y(x-7)+5(x-7)=-35$

$(x-7)(y+5)=-35$

Vì $x,y$ nguyên nên $x-7, y+5$ nguyên. $(x-7)(y+5)=-35\Rightarrow x-7$ là ước của $-35$.

Mà $x\geq 3\Rightarrow x-7\geq -4$

$\Rightarrow x-7\in \left\{-1; 1; 5; 7; 35\right\}$

Nếu $x-7=-1\Rightarrow y+5=35$

$\Rightarrow x=6; y=30$

Nếu $x-7=1\Rightarrow y+5=-35$

$\Rightarrow x=8; y=-40$

Nếu $x-7=5\Rightarrow y+5=-7$

$\Rightarrow x=12; y=-12$
Nếu $x-7=7\Rightarrow y+5=-5$

$\Rightarrow x=14; y=-10$

Nếu $x-7=35; y+5=-1$

$\Rightarrow x=42; y=-6$

Bình luận (0)
AH
10 tháng 2 2024 lúc 23:30

c/

$xy-x-3y=8$

$\Rightarrow (xy-x)-3y=8$

$\Rightarrow x(y-1)-3(y-1)=11$

$\Rightarrow (y-1)(x-3)=11$

Do $x,y$ nguyên nên $x-3, y-1$ cũng là số nguyên. Mà $(x-3)(y-1)=11$ nên ta có các TH sau:
TH1: $x-3=1, y-1=11\Rightarrow x=4; y=12$

TH2: $x-3=-1, y-1=-11\Rightarrow x=2; y=-10$

TH3: $x-3=11, y-1=1\Rightarrow x=14; y=2$

TH4: $x-3=-11, y-1=-1\Rightarrow x=-8; y=0$
 

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 1 2024 lúc 18:57

Bài 1:

a: ĐKXĐ: \(x+4\ne0\)

=>\(x\ne-4\)

b: ĐKXĐ: \(2x-1\ne0\)

=>\(2x\ne1\)

=>\(x\ne\dfrac{1}{2}\)

c: ĐKXĐ: \(x\left(y-3\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)

d: ĐKXĐ: \(x^2-4y^2\ne0\)

=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)

=>\(x\ne\pm2y\)

e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)

 Bài 2:

a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)

b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)

\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)

\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)

\(=\dfrac{x+y}{x-y}\)

c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)

\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)

\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)

\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)

\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)

\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)

g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)

\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)

\(=\dfrac{x+4}{x+2}\)

 

Bình luận (0)
Xem chi tiết
Xem chi tiết
TL
Xem chi tiết
PP
Xem chi tiết
H9
3 tháng 7 2023 lúc 14:44

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

Bình luận (0)