Cho biết : \(\overline{abc}-\overline{bc}=\overline{ac}\) . Tìm \(\overline{abc}\)
Tìm abc biết: \(\overline{ca}-\overline{ac}=\overline{abc}-\overline{ca}\)
ca - ac = abc - ca
<=> 2ca = abc + ac
<=> 2( 10c + a ) = 100a + 10b+ c + 10a + c
<=>18c = 108a + 10b
<=> 9c = 54a + 5b
9c chia hết cho 9 => 54a + 5b cũng phải chia hết cho 9
Mà 54a chia hết cho 9 => 5b phải chia hết cho 9
=> \(b\in\left\{0;9\right\}\)
+, Nếu b = 0
=> c = 6a
Mà c và a khác 0 => a =1 ; c = 6
+, Nếu b = 9
=> c = 6a + 5
Vì \(a\ge1\)\(\Rightarrow c\ge11\)( loại )
Vậy a = 1; b = 0; c= 6
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)
Tìm số tự nhiên \(\overline{ab}\), biết: \(1+2+3+...+\overline{bc}=\overline{abc}\)
tìm các chữ số a,b,c biết \(\overline{abc}-\overline{ac}=2\overline{cb}+\overline{bc}\)
Cho biết \(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)
Tính tổng\(\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}\)
Cho biết:\(\overline{\frac{abc}{\overline{bc}}=\frac{\overline{bca}}{\overline{ca}}=\frac{\overline{cab}}{\overline{ab}}}\)
Tính tổng:\(\frac{a}{\overline{bc}}+\frac{b}{\overline{ca}}+\frac{c}{\overline{ab}}\)
Bài 1: Cho tam giác ABC vuông tại A, BC=10cm, AC=6cm. Tính /\(\overline{CA}-\overline{CB}\)/.
Bài 2: Cho tam giác ABC:
a) Xác định điểm M thỏa mãn: \(\overline{MA}-\overline{MB}+\overline{MC}=0\)
b) G là trọng tâm của tam giác ABC. Chứng minh rằng:\(\overline{GA}+2\overline{GB}+3\overline{GC}=\overline{AC}\)
Bài 3: Gọi I,J lần lượt là trung điểm của các đoạn thẳng AB và CD. Chứng minh rằng:\(\overline{AD}+\overline{BC}=\overline{BD}+\overline{AC}=2\overline{IJ}\)
1.Theo đl py-ta-go ,AB=8cm.Ta có|\(\overrightarrow{CA}-\overrightarrow{CB}\)| =|\(\overrightarrow{BA}\)|
=>|\(\overrightarrow{CA}-\overrightarrow{CB}\)|=8cm
3.\(\overrightarrow{IJ}\)=\(\overrightarrow{IA}+\overrightarrow{AD}+\overrightarrow{DJ}\)
\(\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{BC}+\overrightarrow{CJ}\) (vì \(\overrightarrow{IA}=\overrightarrow{IB}\);\(\overrightarrow{DJ}=\overrightarrow{CJ}\))
=>2\(\overrightarrow{IJ}=\overrightarrow{AD}+\overrightarrow{BC}\)
Tương tự =>đề bài
Bài 1:
/CA-CB/=/BA/
sau đó bn dùng pitago là đc
Bài 2
a)MA-MB+MC=0
BA+MC=0
suy ra M là đỉnh còn lại của hình bình hành ABCM
b)xét vế trái ta có:
GA+2GB+3GC
=GB+2GC
=GA+AB+2GA+2AC
=3GA+AB+2AC
=AC
bài 3:
ta có: AD+BC=AB+BD+BA+AC=BD+AC
ta có: BD+AC=BA+AD+AD+DC=2IA+2AD+2DJ=2ID+2DJ=2IJ
bạn thêm ký hiệu vectơ vào hộ mình
Cho tỉ lệ thức \(\dfrac{\overline{abc}}{a+\overline{bc}}=\dfrac{\overline{bca}}{b+\overline{ca}}\). CMR tỉ lệ thức \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}\)