Những câu hỏi liên quan
HV
Xem chi tiết
XO
2 tháng 7 2021 lúc 10:37

2) \(P=\frac{4}{2x^2+2xy+y^2+5x+20}=\frac{4}{\left(x^2+2xy+y^2\right)+\left(x^2+5x+\frac{25}{4}\right)+\frac{75}{4}}\)

\(=\frac{4}{\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}}\)

Để P đạt GTLN 

=> Mẫu thức đạt GTNN

mà \(\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{5}{2}\end{cases}}\)

Thay x = -5/2 và y = 5/2 vào P 

Khi đó P = \(\frac{4}{\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\frac{75}{4}}=\frac{4}{\frac{75}{4}}=\frac{16}{75}\)

Vậy Max P = 16/75 <=> x = -5/2 ; y = 5/2

Bình luận (0)
 Khách vãng lai đã xóa
XO
2 tháng 7 2021 lúc 10:48

1) Ta có P = x2 + 2xy + 3y2 + 5y + 10

= (x2 + 2xy + y2) + (2y2 + 5y + 10) 

\(\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+5\right)=\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+\frac{25}{16}+\frac{55}{16}\right)\)

\(\left(x+y\right)^2+2\left(y+\frac{5}{4}\right)^2+\frac{55}{8}\ge\frac{55}{8}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y+\frac{5}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=-\frac{5}{4}\end{cases}}\)

Vạy Min P = 55/8 <=> x = 5/4 ; y = -5/4 

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
NC
4 tháng 3 2021 lúc 13:18

Áp dụng Bđt Bunhiacopxki vào 2 số \(x^2+4y^2\) và \(1+\dfrac{1}{4}\) có:

\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2=A^2\Rightarrow A^2\le25\Rightarrow A\le5\)

Dấu = xảy ra \(\Leftrightarrow\dfrac{x^2}{1}=\dfrac{4y^2}{\dfrac{1}{4}}\Leftrightarrow x^2=16y^2\Rightarrow x=4,y=1\) 

Bình luận (0)
BB
Xem chi tiết
NL
3 tháng 3 2021 lúc 22:12

\(A=\sqrt{\left(1.x+\dfrac{1}{2}.2y\right)^2}\le\sqrt{\left(1+\dfrac{1}{4}\right)\left(x^2+4y^2\right)}=5\)

\(A_{max}=5\) khi \(\left(x;y\right)=\left(4;1\right);\left(-4;-1\right)\)

Bình luận (0)
DA
Xem chi tiết
EC
17 tháng 8 2019 lúc 15:19

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

Bình luận (0)
DA
17 tháng 8 2019 lúc 15:31

Đúng ko vậy bạn

Bình luận (0)
BK
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
DH
Xem chi tiết
TC
1 tháng 4 2022 lúc 17:33

giải bằng Bunhiaskopki nha bạn, search gg

Bình luận (0)
XO
1 tháng 4 2022 lúc 17:34

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm) 

Bình luận (0)
HT
Xem chi tiết