GTNN cua bieu thuc 4x^2-20x+40
1) Tim GTNN cua bieu thuc sau
a) M = x^2 + 4x + 9
b) N = x^2 - 20x +101
5) Tim GTLN cua bieu thuc sau
a) C = -y^2 + 6y -15
b) B = -x^2 + 9x - 12
c) D = 3x - x^2
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
gtnn cua bieu thuc
A=-x2-2x+5-y2+4y
B= -4x2-y2+20x+2y-30
\(A=-x^2-2x+5-y^2+4y\)
\(=-x^2-2x-1-y^2+4y-4+10\)
\(=-\left(x^2+2x+1\right)-\left(y^2-4y+4\right)+10\)
\(=-\left(x+1\right)^2-\left(y-2\right)^2+10\ge10\)
Xảy ra khi \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
\(B=-4x^2-y^2+20x+2y-30\)
\(=-4x^2+20x-25-y^2+2y-1-4\)
\(=-4\left(x^2-5x+\frac{25}{4}\right)-\left(y^2-2y+1\right)-4\)
\(=-4\left(x-\frac{5}{2}\right)^2-\left(y-1\right)^2-4\le-4\)
\(=-4\left(x-\frac{5}{2}\right)^2-\left(y-1\right)^2-4\le-4\)
Xảy ra khi \(x=\frac{5}{2};y=1\)
mình nghĩ bạn chép sai đề bài rồi hay sao ấy, đề bài đúng của mình là gtln cơ .
A=-(x2+2x+1)-(y2-4y+4)+1+4+5
=-(x+1)2-(y-2)2+10
vì (x+1)2lớn hơn hoặc bằng 0 và (y-2)2 cũng lớn hơn hoặc bằng 0
=>-(x+1)2nhỏ hơn hoặc bằng 0 và -(y-2)2 cũng vậy=>-(x+1)2-(y-2)2 sẽ nhỏ hơn hoặc bằng 0=>-(x+1)2-(y-2)2+10 sẽ nhỏ hơn hoặc bằng 10. vậy gtln của A=10
dấu bằng xảy ra khi đồng thời x+1=0=>x=-1 và y-2=0=>y=2
B=-((2x)2+20x+25)-(y2-2y+1)+25+1-30
=-(2x+5)2-(y-1)2-4
bạn lập luận tương tự như ý a sẽ được -(2x+5)2-(y-1)2-4 sẽ nhỏ hơn hoặc bằng-4 dấu bằng xảy ra khi:2x+5=0=>x=-5/2 và y-1=0=>y=1
tim GTNN va GTLN cua bieu thuc E= 2x2 +20x-43
Tim GTNN cua bieu thuc A= 4x^2 + 12x + 8
Ta có: \(A=4x^2+12x+9-1\)
<=> \(A=\left(2x+3\right)^2-1\)
<=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)
<=> \(A=\left(2x+2\right)\left(2x+4\right)\)
<=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)
Vậy Amin = 8 khi x=0
trần gia bảo bái phục bái phục!
Lời giải
Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)
Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)
\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)
\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))
Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2
Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2
Tim gtnn cua bieu thuc A=(2x^2+4x-1)/(x^2+1)
Tim GTNN cua bieu thuc A=5x^2=9y^2-4x-12xy+9
A=5x^2+9y^2-4x-12xy+9
= x^2 - 4x + 4 + 9y^2 - 12xy + 4x^2 + 5
= (x-2)^2 + (3y - 2x)^2 +5 >= 5
Dấu "=" xẩy ra khi x-2=0 và 3y-2x=0
hay x = 2 và y = 4/3
Vậy GTNN của A là 5 khi x = 2 và y = 4/3
Tìm GTNN hoac GTLN cua bieu thuc sau
4x2 + 4x + 11
\(A=4x^2+4x+11=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\forall x\Rightarrow\left(2x+1\right)^2+10\ge10\)
''='' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy Min_A = 10 khi x = -1/2
\(A=4x^2+4x+11\)
\(\Leftrightarrow A=4x^2+4x+1+10\)
\(\Leftrightarrow A=\left[\left(2x\right)^2+2.2x+1\right]+10\)
\(\Leftrightarrow A=\left(2x+1\right)^2+10\)
Vậy GTNN của A=10 khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
tim gia tri lon nhat cua bieu thuc :
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
c) C= 5+ -8/ 4x I5x+7I 24
tim gia tri lon nhat cua bieu thuc :
b) D= 2 I 7x+5I +11/ I 7x+5I +4
tim GTNN cua bieu thuc :
c) C= 5+ -8/ 4x I5x+7I 24