x^3-16x=0
a) \(4x^2+16x+3=0\)
\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)
b) \(7x^2+16x+2=1+3x^2\)
\(4x^2+16x+1=0\)
\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)
c) \(4x^2+20x+4=0\)
\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)
\(\Leftrightarrow x^2+5x+1=0\)
\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)
tim x biet : x^3-16x=0
Trả lời
x^3 - 16x = 0
x(x^2 - 16) = 0
Nghiệm thứ nhất: x=0
Tiếp tục:
x^2 - 16 = 0
x^2 - 4^2 = 0
(x-4)*(x+4) = 0
Nếu x-4=0 ta có nghiệm thứ hai x=4
Nếu x+4=0 ta có nghiệm thứ ba x= -4
Vậy phương trình có hệ nghiệm là:
x=0
x=4
x= -4
~ Cậu hok lớp nào? Mik hok lớp 6a1~
x3 - 16x = 0
=> x(x2 - 16) = 0
<=> x = 0 ; 4 ; -4
2x(x-3)-16x2(3-x)=0
\(2x\left(x-3\right)-16x^2\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(1+8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-\frac{1}{8}\end{matrix}\right.\)
2√25xy+√(225x^3 y^3 )-3y√(16x^3 y) (x≥0;y≥0)
x^3 - 1/16x = 0
x(x^2 - 1/16) =0
x(x+1/4)(x-1/4)=0
...............(tự làm tiếp)
Tìm x biết: 3-16x^2=0
`3-16x^2=0`
`<=>(\sqrt3)^2-(4x)^2=0`
`<=>(\sqrt3+4x)(\sqrt3-4x)=0`
`<=> [(\sqrt3=-4x),(\sqrt3=4x):}`
`<=> [(x=-\sqrt3/4),(x=\sqrt3/4):}`
Vậy `S={\pm \sqrt3/4}`.
Ta có: \(3-16x^2=0\)
\(\Leftrightarrow16x^2=3\)
\(\Leftrightarrow x^2=\dfrac{3}{16}\)
hay \(x\in\left\{\dfrac{\sqrt{3}}{4};-\dfrac{\sqrt{3}}{4}\right\}\)
tim x?
x^3-16x=0
x3 -16.x = 0
<=>x . ( x2 -16 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
Vậy phương trình có nghiệm { 0; 4 ; -4 }
x ^ 4 + 5x ^ 3-x ^ 2-16x + 10 = 0
x4+5x3-x2-16x+10=0
<=>x4+3x3-5x2+2x3+6x2-10x-5x2-15x+25=0
<=>x2(x2+3x-5)+2x(x2+3x-5)-5(x2+3x-5)=0
<=>(x2+2x-2)(x2+3x-5)=0
<=>x2+2x-2=0 hoặc x2+3x-5=0
Với x2+2x-2=0\(\Leftrightarrow x=\pm\sqrt{3}-1\)
Với x2+3x-5=0\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{29}+3}{2}\\x=\frac{\sqrt{29}-3}{2}\end{cases}}\)
x3-16x=0
\(x^3-16x=0\)
\(\left(x^2-16\right)x=0\)
Th1: \(x=0\)
Th2: \(x^2-16=0\)
\(x^2=16\)
\(x=+-4\)
Vậy x=-4; 0; 4
\(x^3-16x=0\)
\(=>x\left(x^2-16\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=+-4\end{cases}}\)
x3-16x=0
=>x2.x-16x=0
=>x2.x=16x
=>x2=16
=>x2=42
=>x=4