Những câu hỏi liên quan
HG
Xem chi tiết
HT
Xem chi tiết
BL
Xem chi tiết
KN
Xem chi tiết
NT
28 tháng 1 2019 lúc 13:37

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

Bình luận (0)
LH
Xem chi tiết
NC
Xem chi tiết
NV
Xem chi tiết
QL
7 tháng 7 2019 lúc 21:38

\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2=x^2-4\)

\(\Leftrightarrow x^2-4x+4-x^2+4=0\)

\(\Leftrightarrow-4x+8=0\)

\(\Leftrightarrow x=2\)

Bình luận (1)
VH
17 tháng 7 2019 lúc 17:11

Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{x-2}=b;\) ta có:

\(2a^2-b^2=ab\)\(2a^2-ab-b^2=0\)

\(\Leftrightarrow2a^2+ab-2ab-b^2=0\)

\(\left(2a+b\right)\left(a-b\right)=0\)

\(\left[{}\begin{matrix}2\sqrt[3]{x+2}=-\sqrt[3]{x-2}\\\sqrt[3]{x-2}=\sqrt[3]{x+2}\end{matrix}\right.\)\(x=-\frac{14}{9}\)

Bình luận (0)
H24
Xem chi tiết
LL
Xem chi tiết
CQ
15 tháng 9 2020 lúc 11:31

\(\left(x^2-4x+3\right)\left(x^2-6x+8\right)=8\) 

\(\left(x^2-3x-x+3\right)\left(x^2-4x-2x+8\right)=8\)  

\(\left[x\left(x-3\right)-1\left(x-3\right)\right]\left[x\left(x-4\right)-2\left(x-4\right)\right]=8\)

\(\left(x-1\right)\left(x-3\right)\left(x-2\right)\left(x-4\right)=8\) 

\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=8\) 

\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)-8=0\)  

Đặt \(t=x^2-5x+4\) 

\(t\left(t+2\right)-8=0\) 

\(t^2+2t-8=0\) 

\(t^2+4t-2t-8=0\) 

\(t\left(t+4\right)-2\left(t+4\right)=0\) 

\(\left(t+4\right)\left(t-2\right)=0\) 

\(\orbr{\begin{cases}t+4=0\\t-2=0\end{cases}}\) 

\(\orbr{\begin{cases}t=-4\\t=2\end{cases}}\)  

\(\orbr{\begin{cases}x^2-5x+4=-4\\x^2-5x+4=2\end{cases}}\)  

\(\orbr{\begin{cases}x^2-5x+8=0\left(ptvn\right)\\x^2-5x+2=0\end{cases}}\) 

\(x^2-5x+2=0\) 

\(\orbr{\begin{cases}x=\frac{5+\sqrt{17}}{2}\\x=\frac{5-\sqrt{17}}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa