Những câu hỏi liên quan
NH
Xem chi tiết
PT
Xem chi tiết
PQ
2 tháng 4 2018 lúc 19:34

Ta có : 

\(x-y-z=0\)

\(\Rightarrow\)\(x-z=y\) \(\left(1\right)\)

\(\Rightarrow\)\(y-x=-z\) \(\left(2\right)\)

\(\Rightarrow\)\(z+y=x\) \(\left(3\right)\)

Lại có : 

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Thay (1), (2) và (3) vào \(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\) ta được : 

\(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=\frac{xy\left(-z\right)}{xyz}=\frac{\left(-1\right)xyz}{xyz}=-1\)

Vậy \(B=-1\)

Chúc bạn học tốt ~ 

Bình luận (0)
PT
2 tháng 4 2018 lúc 19:29

Nhanh giùm nha Mình cần gấp

Bình luận (0)
LH
Xem chi tiết
DH
4 tháng 12 2019 lúc 23:43

Violympic toán 9

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
BL
8 tháng 8 2019 lúc 21:41

\(S=\frac{yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

+ \(yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)\)

\(=yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left[\left(y-z\right)+\left(x-y\right)\right]\)

\(+xy\left(z+1\right)\left(x-y\right)\)

\(=\left(y-z\right)\left[yz\left(x+1\right)-zx\left(y+1\right)\right]+\left(x-y\right)\left[xy\left(z+1\right)-zx\left(y+1\right)\right]\)

\(=\left(y-z\right)\left[z\left(y-x\right)\right]+\left(x-y\right)\cdot x\cdot\left(y-z\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

\(\Rightarrow S=\frac{1}{xyz}\)

Bình luận (0)
NT
Xem chi tiết
H24
29 tháng 12 2019 lúc 12:14

BĐT \(\Leftrightarrow\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}\le1+\frac{x}{z}+\frac{z}{x}+1\)

Xét BĐT tổng quát : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng )

Nên \(\frac{a}{b}+\frac{b}{a}\ge2\)

Khi đó ta có BĐT trên đúng.

@ Em không chắc vì em mới đọc cái này ạ, có gì sai mn chỉ ạ !

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
15 tháng 10 2018 lúc 20:11

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)

+) \(\frac{y+z}{x}=2\)

=> y+z=2x

+) \(\frac{x+z}{y}=2\)

=>x+z=2y

+)\(\frac{x+y}{z}=2\)

=> x+y=2z 

Mà B= ( 1+x/y)(1+y/z) (1+z/x)

      B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

      B= \(\frac{2z.2x.2y}{xyz}\)

      B= 8

~ Chúc bạn học tốt ~

Tích và kết bạn với mình nha!

Bình luận (0)
H24
15 tháng 10 2018 lúc 20:13

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Lại có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

(+) Xét x + y + z \(\ne\) 0

Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)

Bình luận (0)
LT
Xem chi tiết
PG
2 tháng 1 2023 lúc 15:08

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

Bình luận (0)
ND
Xem chi tiết
SG
25 tháng 2 2017 lúc 18:20

Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:

A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)

\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)

Dấu "=" xảy ra khi x = y = z = 1

Bình luận (0)
TN
Xem chi tiết