LT

cho 3 số x,y,z đôi 1 khác nhau và chứng minh rằng :

\(\dfrac{y-z}{\left(x-y\right)\cdot\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\cdot\left(y-x\right)}+\dfrac{y-x}{\left(z-x\right)\cdot\left(z-y\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)

PG
2 tháng 1 2023 lúc 15:08

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
MN
Xem chi tiết
TL
Xem chi tiết
ND
Xem chi tiết
NL
Xem chi tiết
BK
Xem chi tiết
BK
Xem chi tiết
BK
Xem chi tiết
V2
Xem chi tiết