Tìm x biết :
\(\sqrt{x+27}=3\sqrt{3}\)
tìm x biết a,\(\sqrt{x^2-4x+4}=7\) b,\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\sqrt{9x+27}=6\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
tìm các só thực x sao cho \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}+\sqrt[3]{3-\sqrt{\frac{x}{27}}}\in Z\)
p/s: Nhớ mãi cái hôm thi vio v19 Gặp câu này hong bt làm :((
lg: Đặt biểu thức= A
$<=> A^3 = 9 + 3\sqrt[3]{9-\frac{x}{27}}+A$
$<=> A(A^2- 3\sqrt[3]{9-\frac{x}{27}}) =9 = 1.9 = -1.-9 = -3.-3 = 3.3= -9.-1=9.1$
....
tìm tất cả các số thực x sao cho \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}+\sqrt[3]{3-\sqrt{\frac{x}{27}}}\in Z\)
Đặt Q = \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\)
\(^{Q^3}\)= 3 + \(\sqrt{\frac{x}{27}}\)+3 - \(\sqrt{\frac{x}{27}}\)+3(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)*\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\) )(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\))
\(Q^3\)= 6 +3 \(\sqrt[3]{\left(3+\sqrt{\frac{x}{27}}\right)\left(3-\sqrt{\frac{x}{27}}\right)}\)\(Q\)
\(Q^3\)= 6+ 3\(\sqrt[3]{\left(3^2-\left(\sqrt{\frac{x}{27}}\right)^2\right)}\)\(Q\)
\(Q^3\)= 6 + 3 \(\sqrt[3]{9-\frac{x}{27}}\)\(Q\)
\(Q^3\)= 6 + 3\(\sqrt[3]{\frac{243-x}{27}}\)\(Q\)
\(Q^3\)= 6 + \(\sqrt[3]{243-x}\)\(Q\)
\(Q\)( \(Q^2\)- \(\sqrt[3]{243-x}\)) =6
\(Q\)=\(\frac{6}{Q^2-\sqrt[3]{243-x}}\)
Vì Q \(\in\)Z nên \(Q^2\)\(\in\)\(Z\), 6\(\in\)\(Z\) nên \(\sqrt[3]{243-x}\)\(\in\)\(Z\); \(Q^2\)- \(\sqrt[3]{243-x}\)\(\in\)\(Ư\left(6\right)\)=\(\left\{+-1;+-2;+-3;+-6\right\}\)
Suy ra 243 -x \(\in\)+ -1; + -8 ;+-27;....
\(Q^2\)-\(\sqrt[3]{243-x}\)= 1 \(\Rightarrow\)\(Q^2\)= 1+\(\sqrt[3]{243-x}\)Vì Q\(\in\)Z nên \(\sqrt[3]{243-x}\)= 8
Suy ra x=241 hoặc x=245
Vậy......
Không biết mk lm đúng hay sai mong mấy bn đóng góp ý kiến . Cảm ơn nhiều ạ
tìm x)\(\sqrt{3-x}\)-\(\sqrt{12-4x}\)+\(\sqrt{27-9x}\)=20
\(\sqrt{3-x}\) - \(\sqrt{12-4x}\) + \(\sqrt{27-9x}\) = 20 đk \(3-x\) ≥ 0 ⇒ \(x\le3\)
\(\sqrt{3-x}\) - \(\sqrt{4.\left(3-x\right)}\) + \(\sqrt{9.\left(3-x\right)}\) = 20
\(\sqrt{3-x}\) - 2\(\sqrt{3-x}\) + 3\(\sqrt{3-x}\) = 20
\(\sqrt{3-x}\).( 1 - 2 + 3) = 20
2\(\sqrt{3-x}\) = 20
\(\sqrt{3-x}\) = 20: 2
\(\sqrt{3-x}\) = 10
3 - \(x\) = 100
\(x\) = 3 - 100
\(x\) = -97 (thỏa mãn)
Vậy \(x\) = -97
tìm x: \(\sqrt{x+3}\)+\(\sqrt{9x+27}\)-\(\sqrt{4x+12}\)=10
\(\sqrt{x+3}\) + \(\sqrt{9x+27}\) - \(\sqrt{4x-12}\) = 10 đk \(x+3\) ≥ 0 ⇒ \(x\) ≥ -3
\(\sqrt{x+3}\) + \(\sqrt{9\left(x+3\right)}\) - \(\sqrt{4\left(x+3\right)}\) = 10
\(\sqrt{x+3}\) + 3\(\sqrt{x+3}\) - 2\(\sqrt{x+3}\) = 10
(1 + 3 - 2)\(\sqrt{x+3}\) = 10
2\(\sqrt{x+3}\) = 10
\(\sqrt{x+3}\) = 10: 2
\(\sqrt{x+3}\) = 5
\(x+3\) = 10
\(x\) = 10 - 3
\(x\) = 7 ( thỏa mãn)
Vậy \(x\) = 7
Tinh giá trị biểu thuc \(A=x^2+2016-2017\)
Biết \(x=\frac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+3}}\)
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)
Cho hai biểu thức:
A= \(3+\sqrt[3]{-8}.\sqrt{3}+\sqrt[3]{27}.\sqrt{3}-\sqrt{7+4\sqrt{3}}\)
B= \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\left(x>0;x\ne1\right)\)
a) Rút gọn A,B
b) Tìm các giá trị của x để B<A?
Help !!!
a: \(A=3+\left(-2\right)\cdot\sqrt{3}+3\cdot\sqrt{3}-2-\sqrt{3}\)
\(=3-2=1\)
\(B=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b: B<A
=>B-1<0
=>\(\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}}< 0\)
=>-1/căn x<0
=>căn x>0
=>x>0 và x<>1
Tính giá trị biểu thức:
a) \(P=\left(x^3+12x-9\right)^{2005}\), biết \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\);
b) \(Q=x^3+ax+b\), biết \(x=\sqrt[3]{-\dfrac{b}{2}+\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}+\sqrt[3]{-\dfrac{b}{2}-\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}\)
a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975
b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b