Những câu hỏi liên quan
PH
Xem chi tiết
AN
20 tháng 12 2016 lúc 8:53

Ta có

\(1-\frac{2x}{2x+y}=1-\frac{2xy}{2xy+y^2}=\frac{y^2}{2xy+y^2}\left(1\right)\)

Ta lại có

\(\frac{y^2}{2xy+y^2}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow1-\frac{2x}{2x+y}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(3\right)\)

Tương tự

\(1-\frac{2y}{2y+z}+\frac{2yz+z^2}{\left(x+y+z\right)^2}\ge\frac{2z}{\left(x+y+z\right)}\left(4\right)\)

\(1-\frac{2z}{2z+x}+\frac{2xz+x^2}{\left(x+y+z\right)^2}\ge\frac{2x}{x+y+z}\left(5\right)\)

Lấy (3) + (4) + (5) vế theo vế ta được

\(3-2M+\frac{2\left(xy+yz+zx\right)+x^2+y^2+z^2}{\left(x+y+z\right)^2}\ge\frac{2\left(x+y+z\right)}{x+y+z}\)

\(\Leftrightarrow3-2M+1\ge2\)

\(\Leftrightarrow M\le1\)

Dấu =  xảy ra khi \(x=y=z\)

Bình luận (0)
LF
Xem chi tiết
HN
11 tháng 8 2016 lúc 19:57

Đặt \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)

Tìm giá trị nhỏ nhất : 

Áp dụng bđt Cauchy : \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\ge\frac{3.\sqrt[3]{xyz}}{3}+\frac{2016}{\sqrt[3]{xyz}}\)

\(\Rightarrow A\ge\sqrt[3]{xyz}+\frac{2016}{\sqrt[3]{xyz}}\ge2\sqrt{\sqrt[3]{xyz}.\frac{2016}{\sqrt[3]{xyz}}}\)

\(\Rightarrow A\ge2\sqrt{2016}=24\sqrt{14}\) . 

Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x=y=z\\\sqrt[3]{xyz}=\frac{2016}{\sqrt[3]{xyz}}\end{cases}\) \(\Leftrightarrow x=y=z=12\sqrt{14}\)

Vậy A đạt giá trị nhỏ nhất bằng \(24\sqrt{14}\) tại \(x=y=z=12\sqrt{14}\)

 

 

Bình luận (0)
LC
Xem chi tiết
AH
21 tháng 11 2023 lúc 22:37

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$\Rightarrow xy+yz+xz=0$

Khi đó:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=5^2-2.0=25$

Bình luận (0)
PH
Xem chi tiết
LN
Xem chi tiết
TC
21 tháng 6 2015 lúc 10:18

Hãy xem xét các thiết lập của một trăm số tự nhiên đầu tiên {0,1,2,3, ..., 99}. K là tổng các chữ số của một số trong các thiết lập. Tìm giá trị của k như vậy mà số lượng các số có chữ số thêm đến các giá trị tương tự là cực đại.
 

 

Bình luận (0)
NY
Xem chi tiết
NT
20 tháng 7 2022 lúc 13:48

a: \(=-3\left(x^2+3x+\dfrac{25}{3}\right)\)

\(=-3\left(x^2+3x+\dfrac{9}{4}+\dfrac{73}{12}\right)\)

\(=-3\left(x+\dfrac{3}{2}\right)^2-\dfrac{73}{4}< =-\dfrac{73}{4}\)

Dấu '=' xảy ra khi x=-3/2

b: \(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu '=' xảy ra khi x=1/2

c: \(=-\left(x^2-7x-12\right)\)

\(=-\left(x^2-7x+\dfrac{49}{4}-\dfrac{97}{4}\right)\)

\(=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{97}{4}< =\dfrac{97}{4}\)

Dấu '=' xảy ra khi x=7/2

Bình luận (0)
DN
Xem chi tiết
VB
Xem chi tiết
HT
Xem chi tiết