Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

LF

Find the maximum and minimum value of the expression

\(\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)if \(x,y,z\in\left[1,2016\right]\)

HN
11 tháng 8 2016 lúc 19:57

Đặt \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)

Tìm giá trị nhỏ nhất : 

Áp dụng bđt Cauchy : \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\ge\frac{3.\sqrt[3]{xyz}}{3}+\frac{2016}{\sqrt[3]{xyz}}\)

\(\Rightarrow A\ge\sqrt[3]{xyz}+\frac{2016}{\sqrt[3]{xyz}}\ge2\sqrt{\sqrt[3]{xyz}.\frac{2016}{\sqrt[3]{xyz}}}\)

\(\Rightarrow A\ge2\sqrt{2016}=24\sqrt{14}\) . 

Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x=y=z\\\sqrt[3]{xyz}=\frac{2016}{\sqrt[3]{xyz}}\end{cases}\) \(\Leftrightarrow x=y=z=12\sqrt{14}\)

Vậy A đạt giá trị nhỏ nhất bằng \(24\sqrt{14}\) tại \(x=y=z=12\sqrt{14}\)

 

 

Bình luận (0)

Các câu hỏi tương tự
HC
Xem chi tiết
ND
Xem chi tiết
PT
Xem chi tiết
ND
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết
PT
Xem chi tiết
ND
Xem chi tiết