Chứng tỏ rằng :
\(7^{20}+49^{11}+343^7\) chia hết cho57
Chứng minh: 7^20+49^11+343^7 chia hết cho 57 ?
7^20 + 49^11 + 343^7 = ( 7^1 )^20 + ( 7^2 )^11 + ( 7^3 )^7
=7^20 + 7^21 + 7^22 = 7^20 ( 1 + 7 + 7^2 ) = 720.57 Vì 57 chia hết cho 57 nên 7^20 .57 chia hết cho 57 => 7^20 + 49^11 + 343^7 chia hết cho 57
Chứng minh 7^20 + 49^11 + 343^7 chia hết cho 57
720 + 4911 + 3437 = ( 71 )20 + ( 72 )11 + ( 73 )7 =720 + 721 + 722 = 720 ( 1 + 7 + 72 ) = 720.57
Vì 57 chia hết cho 57 nên 720 .57 chia hết cho 57
=> 720 + 4911 + 3437 chia hết cho 57 ( đpcm )
Ta có: 7^20 + 49^11 + 343^7 = 7^20 + (7^2)^11 + (7^3)^7 = 7^20 + 7^22 + 7^21 = 7^20(1 + 7 + 7^2) = 7^20.57 chia hết cho 57
=>ĐPCM
CMR : \(7^{20}+49^{11}+343^7\) chia hết cho 57
\(7^{20}+49^{11}+343^7\)
\(=7^{20}+\left(7^2\right)^{11}+\left(7^3\right)^7\)
\(=7^{20}+7^{22}+7^{21}\)
\(=7^{20}\left(1+7^2+7\right)\)
\(=7^{20}.57⋮57\)
\(\Leftrightarrowđpcm\)
Chứng tỏ rằng : 5 mũ 20 + 25 mũ 11 + 125 mũ 7 chia hết cho 31.
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
5^20+25^11+125^7=5^20+(5^2)^11+(5^3)^7= 5^20+5^22+5^21=5^20(1+5^2+5)=5^20.31
Vậy 5^20+25^11+125^7 chia hết cho 31
Cho S = 7+7^2+7^3+..............+7^49
a) Chứng tỏ rằng S-7 chia hết cho 19
b) Chứng tỏ rằng 6S+7 là luỹ thừa của 7
Chứng tỏ rằng: 520+ 2511+ 1257 chia hết cho 31
ta có(^ là dấu mũ):
5^20+25^11+125^7=5^20+5^22+5^21
=5^20+5^20.5^2+5^21.5
=5^20.(1+5^2+5)=5^20.(1+25+5)=5^20.31 chia hết cho 31
Nếu sai chỗ nào thì nhắc mik nhé :)
\(5^{20}+25^{11}+125^7=5^{20}+5^{2^{11}}+5^{3^7}=5^{20}+5^{22}+5^{21}=5^{20}+5^{20}.5^2+5^{20}.5=5^{20}\left(5^2+5+1\right)=5^{20}.31\)Vì \(5^{20}.31⋮31\) nên \(\left(5^{20}+25^{11}+125^7\right)⋮31\)
Chứng tỏ rằng: 7^6 + 7^5 - 7^11 chia hết cho 11
Hình như bn viết sai đề rồi, chỗ 711 fai là 74 ms đúng
Ta có:
76 + 75 - 74
= 74.(72 + 7 - 1)
= 74.(49 + 7 - 1)
= 74.55
= 74.5.11 chia hết cho 11
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
chứng tỏ rằng 7^6 + 7^5 -7^4 chia hết cho 11
\(7^6+7^5-7^4=7^4\left(7^2+7^1-1\right)=7^4\left(49+7-1\right)=55⋮11\)
\(\Rightarrow7^6+7^5-7^4⋮11\)