\(A^2=9A+2A-10A++++++++++0\)
tính giá trị biểu thức (2a-b)/(3a-b)+(5b-a)/(3a+b)-3 biết 10a^2-3b^2-5ab=0 và 9a^2-b^2 khác 0
tính B=\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)biết 10a2-3b2+5ab=0 và 9a2 -b2 khắc0
ĐK \(9a^2-b^2\ne0\)
Ta có B =\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a+b\right)\left(3a-b\right)}\)
=\(\frac{6a^2+2ab-3ab-b^2+15ab-5b^2-3a^2+ab}{9a^2-b^2}\)
=\(\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3\left(a^2+5ab-2b^2\right)}{9a^2-b^2}\)
Từ \(10a^2-3b^2+5ab=0\Rightarrow5ab=3b^2-10a^2\)
\(\Rightarrow B=\frac{3\left(a^2+3b^2-10a^2-2b^2\right)}{9a^2-b^2}=\frac{3\left(-9a^2+b^2\right)}{9a^2-b^2}=-3\)
Vậy B =-3
Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)
cho 10a2-3b2+5ab=0 và 9a2-b2 khác 0 tính giá trị biểu thức Q= \(\frac{2a-b}{3a-b}\)+ \(\frac{5b-a}{3a+b}\)
TÌm giá trị biểu thức \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(10a^2-3b^2+5ab=0\)và \(9a^2-b^2\ne0\)
\(B=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{9a^2-b^2}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)\(=\frac{3a^2+3\left(3b^2-10a^2\right)-6b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\)
BÀI 1: 1D - 2A - 3C - 4D - 5B - 6C - 7A
BÀI 2: 1B- 2A- 3B - 4B - 5D - 6C - 7A
BÀI 3; 1D - 2C - 3D- 4C - 5B - 6D - 7D - 8D - 9A - 10A - 11D - 12A
BÀI 4: 1D - 2A - 3C - 4A - 5B - 6D - 7A - 8B - 9B - 10A
BÀI 5: 1A - 2D - 3D - 4C - 5B - 6D - 7A
Tính\(A=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)biết \(10a^2-3b^2+5ab=0\)và \(9a^2-b^2\ne0\)
Theo giả thiết, ta có:
\(10a^2-3b^2+5ab=0\)
nên \(3\left(10a^2-3b^2+5ab\right)=0\)
\(\Leftrightarrow\) \(30a^2-9b^2+15ab=0\)
\(\Leftrightarrow\) \(15ab=-30a^2+9b^2\)
Do đó: \(A=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3a^2+\left(-30a^2+9b^2\right)-6b^2}{9a^2-b^2}\)
\(A=\frac{-27a^2+3b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\) (do \(9a^2-b^2\ne0\) )
Tính giá trị biểu thức : \(\dfrac{2a-b}{3a-b}+\dfrac{5b-a}{3a+b}\)
Biết \(10a^2-3b^2+5ab=0\) và \(9a^2-b^2\ne0\)
P/s: Mình đang cần gấp!!!
Bài 5: ( 1 điểm )
a) Rút gọn biểu thức : B = \(\dfrac{2a-b}{3a-b}+\dfrac{5b-a}{3a+b}-3\)
b) Tính giá trị của biểu thức B biết: 10a2 - 3b2 - 5ab = 0 & 9a2 - b2 ≠ 0