Tìm số hữu tỉ x,y biết : (3x-33)^2014+|y-7| ^ 2015<hoặc = 0
Tìm số hữu tỉ x,y biết : (3x-33)^2014+|y-7| ^ 2015<hoặc = 0
Tìm số hữu tỉ x,y biết : (3x-33)^2014 |y-7| ^ 2015<hoặc = 0
Ta có:\(\hept{\begin{cases}\left(3x-33\right)^{2014}\ge0\\\left|y-7\right|^{2015}\ge0\end{cases}}\)\(\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}\ge0\)
Kết hợp với giả thiết chỉ có \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}=0\) đúng
\(\Rightarrow\hept{\begin{cases}3x-33=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=11\\y=7\end{cases}}\)
Vậy...................
\(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\le0\)
Ta có \(\left(3x-33\right)^{2014}\ge0\)với mọi gt \(x\in R\)
và \(\left(\left|y-7\right|\right)^{2015}\ge0\)với mọi gt \(x\in R\)
=> \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\ge0\)với mọi gt \(x\in R\)
Mà \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\le0\)
=> \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}=0\)
=> \(\hept{\begin{cases}\left(3x-33\right)^{2014}=0\\\left(\left|y-7\right|\right)^{2015}=0\end{cases}}\)=> \(\hept{\begin{cases}3x-33=0\\y-7=0\end{cases}}\)=> \(\hept{\begin{cases}3x=33\\y=7\end{cases}}\)=> \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)
tìm số hữu tỉ x,y biết (3x-33)^2014+/y-7/^2015 <hoặc= 0
Tìm số hữu tỉ x, y biết: \(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)
Ta có: \(\left\{{}\begin{matrix}\left(3x-33\right)^{2008}\ge0\\\left|y-7\right|^{2009}\ge0\end{matrix}\right.\Rightarrow\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\ge0\)
Mà \(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-33\right)^{2008}=0\\\left|y-7\right|^{2009}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-33=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=7\end{matrix}\right.\)
Vậy \(x=11;y=7\)
(3x-33)^2014+|y-7|^2015 _<0
\(\left(3x-33\right)^{2014}>=0\forall x\)
\(\left|y-7\right|^{2015}>=0\forall y\)
Do đó: \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}>=0\forall x,y\)
mà \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}< =0\)
nên 3x-33=0 và y-7=0
=>x=11 hoặc y=7
Tìm x,y thuộc tập hợp số hữu tỉ, biết:
a, (2x - 5)2015 + (3y - 7)2018 =< 0
b, (3x + 1)2018+ (7 - 5y)2020>= 0
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Tìm số hữu tỷ x,y biết
\(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)
TK MÌNH ĐI MOIH NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
vì (3x-33)^2008 >hoặc =0
|y-7|^2009> hoac =0
=>(3x-33)^2008=0 ; |y-7|^2009=0
=>3x-33=0=>x=33/3=11
y-7=0=>y=7
1 Tìm các số nguyên x,y tm
x^2013+x^2014+2009^2015=y^2015+y^2016+2010^2016
2 tìm số tự nhiên x,y biết 7*(x-2015)^2=23-y^2