Những câu hỏi liên quan
NB
Xem chi tiết
VM
3 tháng 8 2015 lúc 21:30

n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6

hay n^3-n chia hết cho 6

n^5-n=n(n-1)(n+1)(n^2+1)

=n(n-1)(n+1)(n^2-4+5)

=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)

n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp

=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5

=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10

n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

=>5n(n-1)(n+1) chia hết cho 10

=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10

hay n^5-n chia hết cho 10

Bình luận (0)
CM
Xem chi tiết
CM
Xem chi tiết
BN
21 tháng 1 2016 lúc 23:08

vì n chẵn nên n= 2m (m thuộc z) => (2m)^3 - 4(2m) chia hết cho 8

mà 8m^3 - 8m = 8m( m^2 -1)= 8 (m-1)m(m+1) do (m-1)m(m+1) là 3 số tự nhiên liên tiếp nên (m-1)m(m+1) chia hết cho 6

vậy 8(m-1)m(m+1) chia hết cho 48

Bình luận (0)
NT
Xem chi tiết
OO
8 tháng 8 2016 lúc 17:32

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

Bình luận (0)
NT
8 tháng 8 2016 lúc 22:20

ai giải giúp mình bài 2 và bài 3 với

Bình luận (0)
MS
Xem chi tiết
NM
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

Bình luận (0)
LL
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

Bình luận (0)
NT
11 tháng 10 2021 lúc 21:16

\(n^3+3n^2+2n\)

\(=n\left(n^2+3n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

Bình luận (0)
NN
Xem chi tiết
ZZ
16 tháng 4 2016 lúc 16:41

Ta có : 

n- n = n2 x n - n = n ( n2 - 1 )

n ( n2 - 1 ) luôn chia hết cho 6 

Bình luận (0)
NN
16 tháng 4 2016 lúc 16:48

phải trình bày ra chứ

Bình luận (0)
KV
Xem chi tiết
MP
28 tháng 8 2017 lúc 7:32

ta có : \(\left(n+6\right)^2-\left(n-6\right)^2=n^2+12n+36-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36=24n⋮24\)

\(\Leftrightarrow24n\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)

\(\Leftrightarrow\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\)

vậy \(\left(n+6\right)^2-\left(n-6\right)^2\) chia hết cho \(24\) với mọi \(n\) thuộc \(Z\) (đpcm)

Bình luận (0)
MV
28 tháng 8 2017 lúc 9:19

\(\left(n+6\right)^2-\left(n-6\right)^2\\ =\left(n+6+n-6\right).\left[n+6-\left(n-6\right)\right]\\ =2n.\left(n+6-n+6\right)\\ =2n.12\\ =24n⋮24\)

Vậy ...

Bình luận (0)
DD
28 tháng 8 2017 lúc 11:04

Ta có :

\(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n\)

Với mọi \(n\in R\) luôn chia hết cho 24

Bình luận (0)
VU
Xem chi tiết
CL
5 tháng 9 2017 lúc 19:47

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

Bình luận (0)
VU
5 tháng 9 2017 lúc 20:21

. Huhu T^T mong sẽ có ai đó giúp mình "((

Bình luận (0)
LH
Xem chi tiết
TN
28 tháng 8 2017 lúc 7:16

Ta có :

\(\left(n+6\right)^2-\left(n-6\right)^2\)  = \(\left(n+6\right)\left(n+6\right)-\left(n-6\right)\left(n-6\right)\)

\(=n^2+6n+6n+36-\left(n^2-6n-6n+36\right)\)

\(=n^2+12n+36-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=12n+12n\)

\(12n+12n=12\left(n+n\right)=12.2.n=24.n\) và  \(12n+12n=n\left(12+12\right)=24n\)chắc chắn sẽ chia hết cho 24  (đpcm)

Bình luận (0)
NC
19 tháng 8 2019 lúc 21:46

Nguyễn Thị Thúy Ngân, bạn giải chi tiết quá. Cảm ơn nhìu nhe!

Bình luận (0)