Tìm GTNN của biểu thức :
\(2x^2+2y^2-2xy-6y+21\)
Tìm GTNN của biểu thức sau:
2x2 + 2y2 + 2xy - 6y + 21
2x2 + 2y2 + 2xy - 6y + 21
= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15
= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15
= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)
Vậy GTNN là 15 đạt được khi x = - 1, y = 2
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Tìm GTNN của \(2x^2+2y^2-2xy-6y+21\)
violympic có bài này á, chưa gặp bao giờ
giá trị nhỏ nhất của biểu thức 2x^2+2y^2-2xy-6y+21
tìm gtnn của biểu thức
a/A= x^2 + 2y^2+2xy +4x + 6y +19
b/B=2x^2+y^2+2xy-2y-4
c/C=4x^2 +2xy-4x+4xy-3
\(A=x^2+y^2+2xy+4x+4y+4+y^2+2y+1+14\)
\(A=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)
\(B=2\left(x^2+xy+\frac{y^2}{4}\right)+\frac{1}{2}\left(y^2-4y+4\right)-6\)
\(B=2\left(x+\frac{y}{2}\right)^2+\frac{1}{2}\left(y-2\right)^2-6\ge-6\)
\(\Rightarrow B_{min}=-6\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Câu c đề sai, sao vừa có 2xy lại có cả 4xy
tìm GTNN của biểu thức
M = \(x^2+2y^2+2xy-2x-6y+2020\)
Ta Có :
\(M=x^2+2y^2+2xy-2x-6y+2020\)
\(M=\left(x^2+2xy-2x\right)+2y^2-6y+2020\)
\(M=\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)+2y^2-6y+2020-\left(y-1\right)^2\)
\(M=\left(x+y-1\right)^2+2y^2-6y-y^2+2y-1+2020\)
\(M=\left(x+y-1\right)^2+\left(y^2-4y+4\right)+2015\)
\(M=\left(x+y-1\right)^2+\left(y-2\right)^2+2015\)
Nhận xét : Vì \(\left(x+y-1\right)^2\ge0\) với \(\forall x,y\)
Và \(\left(y-2\right)^2\ge0\) với \(\forall y\)
\(\Rightarrow M\ge2015\) với \(\forall x,y\)
Vậy GTNN của M là 2015 đạt được khi
\(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
tik mik nha !!!
x2 + 2y2 + 2xy - 2x - 6y + 2020
= x2 + 2xy + y2 + y2 - 2x - 6y + 2020
= (x+y)2 + y2 - 4y + 4 - 2x - 2y + 2016
= (x+y)2 + (y-z)2 - 2(x+y) + 2016
= (x+y)2 - 2(x+y) + 1 + (y-z)2 + 2015
= (x+y-1)2 + (y-z)2 + 2015 ≥ 2015
Dấu "=" xảy ra khi x+y-1=0 và y-2=0
(=) x=-1 y=2
Vậy GTNN của biểu thức trên là 2015 khi x=-1 và y=2
Chúc bạn học tốt ^^
Tìm GTNN của biểu thức A=x²-6y+2xy+2y²+2030
\(A=\left(x+y\right)^2+\left(y-3\right)^2+2021\ge2021\\ A_{min}=2021\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)
Tìm GTNN của biểu thức A=x²-6y+2xy+2y²+2030
\(A=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+2021\\ A=\left(x+y\right)^2+\left(y-3\right)^2+2021\ge2021\\ A_{min}=2021\Leftrightarrow\left\{{}\begin{matrix}x=-y=-3\\y=3\end{matrix}\right.\)
A=(x2+2xy+y2)+(y2−6y+9)+2021A=(x+y)2+(y−3)2+2021≥2021Amin=2021⇔{x=−y=−3y=3
Bài 1) a) (2x+3y)2
b) (25x2-10x+1)
c) (x2-2y)2
d) 16x2-9y2
Bài 2) Tìm GTNN của biểu thức
D= x2+2y2-2xy-6y+2x+2020
Q= 2x2-4xy+y2-4x+6y+10