Tìm số tự nhiên \(\overline{ab}\) sao cho \(\overline{ab}-\overline{ba}\) = 72
Tìm số tự nhiên \(\overline{ab}\) sao cho \(\overline{ab}-\overline{ba}=72\) ?
Ta có : \(\overline{ab}-\overline{ba}=72\Rightarrow\left(10a+b\right)-\left(10b+a\right)=72\)
\(\Rightarrow10a+b-10b-a=72\)
\(\Rightarrow10a-10b+b-a=72\)
\(\Rightarrow10\left(a-b\right)-a+b=72\)
\(\Rightarrow10\left(a-b\right)-\left(a-b\right)=72\)
\(\Rightarrow\left(10-1\right)\left(a-b\right)=72\Rightarrow9\left(a-b\right)=72\)
\(\Rightarrow a-b=72\div9\Rightarrow a-b=8\)
Vì : a,b là chữ số \(\Rightarrow0< a,b\le9\)
Mà : a - b = 8 \(\Rightarrow\left\{{}\begin{matrix}a=9\\b=1\end{matrix}\right.\)
Vậy số tự nhiên \(\overline{ab}\) cần tìm là 91
Bài 4 (3.0 điểm) : Tìm số nguyên tố \(\overline{ab}\) ( a > b > 0 ), sao cho \(\overline{ab}-\overline{ba}\) là số chính phương.
Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b
\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)
=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8
Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn
Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73
Tìm số tự nhiên \(\overline{ab}\), biết: \(1+2+3+...+\overline{bc}=\overline{abc}\)
Tìm số tự nhiên \(\overline{ab}\) sao cho : \(\overline{ab^2}\)=(a+b)^3
đó là số 27
em mới học lớp 6 thôi
Cho số tự nhiên có 5 chữ số \(\overline{abcde}\)sao cho \(\overline{abcde}=\left(\overline{ab}\right)^3\)
a)CMR: \(20< \overline{ab}< 40\)
b) Tìm \(\overline{abcde}\)
Tìm các số tự nhiên có dạng \(\overline{abba}\)thỏa mãn điều kiện :
\(\overline{abba=}\overline{ab^2+}\overline{ba^2+a}-b\)
Tìm số tự nhiên có 4 chữ số biết
\(\overline{abba}=\overline{ab}^2+\overline{ba}^2+a-b\)
tìm các số tự nhiên có 2 chữ số \(\overline{ab}\)sao cho :
\(2\overline{ab}=a^2+b^2+36\)
pơ'ơ
142533
12245698
Tìm số tự nhiên \(\overline{abcd}\)sao cho số đó \(⋮\)tích của \(\overline{ab}\)và \(\overline{cd}\)
Đặt ab = m , cd = n
Ta có 10m + n chia hết cho mn
=>n chia hết cho m và 10m chia hết cho n
S đó tìm hết
Bài giải
Ta có :
\(\overline{abcd}⋮\overline{ab.\overline{cd}}\) (1)
\(\Rightarrow100.\overline{ab}+\overline{cd}⋮\overline{ab}.\overline{cd}\) (2)
\(\Rightarrow\overline{cd}⋮\overline{ab}\)
Đặt \(\overline{cd}=k.ab\)với \(k\inℕ,1\le k\le9\) (3)
Thay vào (2) :
\(100.\overline{ab}+k.\overline{ab}⋮k.\overline{ab}.\overline{ab}\)
\(\Rightarrow100+k⋮k.\overline{ab}\) (4)
\(\Rightarrow100⋮k\) (5)
Từ (3) và (5) :
\(\Rightarrow k\in\left\{1;2;4;5\right\}\)
Với k=1 ,thay vào (4) \(⋮101⋮\overline{ab}\) (loại)
Với k=2 thay vào (4) :102 \(⋮2.\overline{ab}\Rightarrow51⋮\overline{ab}\).Khi đó:
\(\overline{ab}=17\) và \(\overline{cd}=34\) ,hoặc \(\overline{ab}=51\)và \(\overline{cd}=102\)(loại)
Với k=4 thay vào (4) :104 \(⋮\)4.ab hoặc ab = 26 và cd= 104 (loại)
Với k=5 thay vào (4) :105 \(⋮\)5 .ab \(\Rightarrow\)21\(⋮\)ab .Khi đó :
\(\overline{ab}=21\)và \(\overline{cd}=105\)(loại)
KL : Có hai đáp số : 1734 và 1352