Những câu hỏi liên quan
ND
Xem chi tiết
PQ
8 tháng 3 2018 lúc 8:15

Ta có : 

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\)

\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\)

\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\right)\)

\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2015}{2^{2015}}\)

\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2015}{2^{2014}}-\frac{2014}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)

\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)

\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{2014}}\)

Mà \(\frac{1}{2^{2014}}>0\)

\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2014}}< \frac{1}{2}\)

\(\Leftrightarrow\)\(1+A-\frac{2015}{2^{2015}}< 1+\frac{1}{2}-\frac{1}{2^{2014}}-\frac{2015}{2^{2015}}\)

\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}\right)\)

Mà \(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}>0\)

\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)

\(\Rightarrow\)\(\frac{1}{2}T.2< \frac{3}{2}.2\)

\(\Rightarrow\)\(T< 3\) ( đpcm ) 

Vậy \(T< 3\)

Bạn xem đúng không nhé, chúc bạn học tốt ~

Bình luận (0)
ND
9 tháng 3 2018 lúc 20:02

thank

Bình luận (0)
HH
1 tháng 4 2018 lúc 7:36

Ta có :  T = 2 1 2 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 2 1 T = 2 2 2 + 2 3 3 + 2 4 4 + ... + 2 2015 2015 T − 2 1 T = 2 1 2 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 − 2 2 2 + 2 3 3 + 2 4 4 + ... + 2 2015 2015 2 1 T = 1 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 − 2 2 2 − 2 3 3 − 2 4 4 − ... − 2 2015 2015 2 1 T = 1 + 2 2 3 − 2 2 2 + 2 3 4 − 2 3 3 + ... + 2 2014 2015 − 2 2014 2014 − 2 2015 2015 2 1 T = 1 + 2 2 1 + 2 3 1 + ... + 2 2014 1 − 2 2015 2015 Đặt A = 2 2 1 + 2 3 1 + ... + 2 2014 1 2A = 2 1 + 2 2 1 + ... + 2 2013 1 2A − A = 2 1 + 2 2 1 + ... + 2 2013 1 − 2 2 1 + 2 3 1 + ... + 2 2014 1 A = 2 1 − 2 2014 1 Mà  2 2014 1 > 0 ⇒A = 2 1 − 2 2014 1 < 2 1 ⇔1 + A − 2 2015 2015 < 1 + 2 1 − 2 2014 1 − 2 2015 2015 ⇔ 2 1 T < 2 3 − 2 2014 1 + 2 2015 2015 Mà  2 2014 1 + 2 2015 2015 > 0 ⇒ 2 1 T < 2 3 ⇒ 2 1 T.2 < 2 3 .2 ⇒T < 3 ( đpcm )  Vậy T < 3 Bạn xem đúng không nhé, chúc bạn học tốt ~ 

Bình luận (0)
NN
Xem chi tiết
NH
14 tháng 3 2017 lúc 21:54

bít kq nhưng ko thích giải

Bình luận (0)
PM
18 tháng 12 2020 lúc 20:43

cậu ko giúp cậu ấy thì thôi đừng bảo như thế

Bình luận (0)
 Khách vãng lai đã xóa
PG
Xem chi tiết
AT
Xem chi tiết
ND
19 tháng 4 2021 lúc 23:05
Bạn Phong Thần trả lời hay quá.
Bình luận (0)
 Khách vãng lai đã xóa
PT
10 tháng 2 2021 lúc 14:00

Bình luận (0)
TN
2 tháng 4 2022 lúc 20:26

uk, cái bạn tên Phong Thần công nhận giỏi thật nha

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
NT
27 tháng 6 2021 lúc 21:37

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

Bình luận (1)
TP
3 tháng 5 2022 lúc 20:07

2/3+3/4+...=2+1/2

Bình luận (0)
H24
Xem chi tiết
TG
11 tháng 3 2022 lúc 14:20

1853567804232223

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NH
Xem chi tiết
YN
4 tháng 4 2022 lúc 19:23

`Answer:`

\(T=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)

\(\Leftrightarrow2T=2+\frac{3}{2}+\frac{4}{2^2}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\)

\(\Leftrightarrow2T-T=2+\left(\frac{3}{2}-\frac{2}{2}\right)+\left(\frac{4}{2^2}-\frac{4}{2^2}\right)+...+\left(\frac{2017}{2^{2015}}-\frac{2016}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)

\(\Leftrightarrow2T-T=2+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)

Ta đặt \(V=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

\(\Rightarrow T=2+V-\frac{2017}{2^{2016}}\text{(*)}\)

\(\Leftrightarrow2V=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)

\(\Leftrightarrow2V-V=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)

\(\Leftrightarrow2V-V=1-\frac{1}{2^{2015}}\text{(**)}\)

Từ (*)(**)\(\Rightarrow T=2+\left(1-\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)

\(\Leftrightarrow T=3-\frac{1}{2^{2015}}-\frac{2017}{2^{2016}}\)

`=>T<3`

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết