Những câu hỏi liên quan
NH
Xem chi tiết
NT
Xem chi tiết
ZD
9 tháng 7 2017 lúc 11:04

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

Bình luận (0)
DT
Xem chi tiết
DN
Xem chi tiết
TT
9 tháng 7 2015 lúc 9:32

Theo Dãy tỉ số = ta có :

  \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

Để   \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

=> 12 = 6x => x = 2 

Ta có \(\frac{2.2+1}{5}=\frac{3y-2}{7}\Leftrightarrow1=\frac{3y-2}{7}\Leftrightarrow3y-2=7\Rightarrow3y=9\Leftrightarrow y=3\)

Vậy x = 2 ; y = 3 

Bình luận (0)
PT
9 tháng 7 2015 lúc 9:35

Áp dụng tính chất dãy tỉ số bằng nhau được:

  \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

=> 6x = 12 => x=2 (bài này không có z)

Ta có: \(\frac{2.2+1}{5}=\frac{3y-2}{7}\)

=> \(1=\frac{3y-2}{7}\)

=> 3y-2 = 7

=> y=3

Vậy x=2 và y=3

 

Bình luận (0)
DQ
18 tháng 11 2019 lúc 12:13

x=2,y=3

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
HM
6 tháng 11 2018 lúc 21:11

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{z+4}{9}=\frac{2x+3y-1}{6x}\)(1)

Áp dụng tính chất dãy tỉ sổ bằng nhau, ta được

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{z+4}{9}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{12}{6x}=\frac{2x+3y-1}{2x+3y-1}=1\)

\(\Rightarrow\frac{2}{x}=1\)

\(\Rightarrow x=2\)

Thay x=2 vào (1), ta được

\(\frac{3y-2}{7}=\frac{z+4}{9}=\frac{2\cdot2+1}{5}=1\)

\(\Rightarrow\hept{\begin{cases}3y-2=7\\z+4=9\end{cases}}\Rightarrow\hept{\begin{cases}3y=9\\z=5\end{cases}}\Rightarrow\hept{\begin{cases}y=3\\z=5\end{cases}}\)

Vậy...hok tốt

Bình luận (0)
GN
Xem chi tiết
PK
6 tháng 6 2016 lúc 17:43

a) Theo tính chất của dãu tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{15}\)

=> 6x = 15

=> x = 5/2

Thay x = 5/2, ta có:

\(\frac{2.\frac{5}{2}+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{3y-2}{7}=\frac{6}{5}\)

\(\Rightarrow3y-2=\frac{6}{5}.7=\frac{42}{5}\)

\(\Rightarrow3y=\frac{52}{5}\)

\(\Rightarrow y=\frac{52}{15}\)

Mình ăn cơm đây, câu b tối làm cho

Bình luận (0)
NS
Xem chi tiết
NA
Xem chi tiết
NC
28 tháng 10 2019 lúc 11:32

Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
DN
9 tháng 7 2015 lúc 9:14

bạn làm cho mik câu b đi .Câu a mik ghi thiếu đề mất rồi

Bình luận (0)