cho bt P =x-2\(\sqrt{2x}\) =3
a) Đặt t=\(\sqrt{2x}\) -3 hãy tính biểu thức P
b) Tìm GTNN của P
cho bt P =x-2\(\sqrt{2x}\) -3
a) Đặt t=√2x2x -3 hãy tính biểu thức P
b) Tìm GTNN của P
Cho biểu thức P=x-2\(\sqrt{2x-3}\)
a Đặt t=\(\sqrt{2x-3}\).Hãy biểu thị P theo t
b;Tìm GTNN của P
\(t=\sqrt{2x-3}=>\frac{t^2+3}{2}=x\)
\(=>P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)
ta có \(\frac{\left(t-2\right)^2}{2}\ge0\left(\forall t\right)\)
\(=>\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\left(\forall t\right)\)
minP=-1/2
dấu = xảy ra khi x=7/2
a) \(t=\sqrt{2x-3}\ge0\)
<=> \(t^2=2x-3\)
<=> \(x=\frac{t^2+3}{2}\)
=> \(P=\frac{t^2+3}{2}-2t\)
b) khi đó: \(P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> t = 2 khi đó: x = 7/2
Cho biểu thức \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\) với x > 0
a, Rút gọn biểu thức P
b, Tính giá trị của biểu thức P khi \(x=\dfrac{\sqrt{3-\sqrt{2}}+\sqrt{6-2\sqrt{7}}}{\sqrt{3+\sqrt{2}}}\)
`a)P=(x^2+sqrtx)/(x-sqrtx+1)-(2x+sqrtx)/sqrtx`
`P=(sqrtx(sqrtx+1)(x-sqrtx+1))/(x-sqrtx+1)-(sqrtx(2sqrtx+1))/sqrtx`
`P=x+sqrtx-2sqrtx-1`
`P=x-sqrtx-1`
a: Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=x+\sqrt{x}-2\sqrt{x}-1\)
\(=x-\sqrt{x}-1\)
20 P=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
a. Rút gọn biểu thức P
b. tính giá trị của biểu thức P khi x=9
c. tìm giá trị x để P=3
a: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
b: Khi x=9 thì P=9-3+1=7
c: P=3
=>x-căn x-2=0
=>(căn x-2)(căn x+1)=0
=>x=4
Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{2x+8}{2x-4}\) và B = \(\dfrac{2}{\sqrt{x}-6}\) với \(x\ge0;x\ne4;x\ne36\)
a) Rút gọn các biểu thức A
b) Tìm GTNN của biểu thức P = A : B
Bạn xem lại xem đã biết biểu thức đúng chưa vậy?
cho biểu thức P= 2-\(\sqrt{x-3}\)+ 7\(\sqrt{4x-12}\)-3\(\sqrt{25x-75}\)+8\(\sqrt{\dfrac{x-3}{4}}\)+3
a) rút gọn P
b) Tìm giá trị của P khi x=12
c) tìm x để P=23
d) tìm x để P<8
Cho các biểu thức sau (giải chi tiết)
A = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\) và B = \(\dfrac{2x+3\sqrt{x}+9}{x-9}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức B
b) Cho \(P=\dfrac{A}{B}\). Tìm GTNN của P
a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)
b: \P=A:B
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)
Dấu = xảy ra khi x=0
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
cho x lớn hơn hoặc bằng \(-\frac{1}{2}\)
tính gtnn của biểu thức A=\(\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
ta có \(x\ge-\frac{1}{2}\) thế vào A ta đc
\(A=\sqrt{2.\left(-\frac{1}{2}\right)^2+5.\left(-\frac{1}{2}\right)+2}+2\sqrt{\left(-\frac{1}{2}\right)+3}-2\left(-\frac{1}{2}\right)\)
\(=6\)
vậy Min A = 6 Khi \(x=-\frac{1}{2}\)