Những câu hỏi liên quan
TD
Xem chi tiết
DT
9 tháng 9 2018 lúc 15:35

\(\left(1+\frac{\sin^2}{\cos^2}\right)cos^2-\left(1+\frac{cos^2}{sin^2}\right)sin^2.\)

=> \(\frac{cos^2+sin^2}{cos^2}\left(cos^2\right)-\frac{sin^2+cos^2}{sin^2}\left(sin^2\right)\)

=> 1-1 =0

Bình luận (0)
CQ
24 tháng 9 2020 lúc 11:52

\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\) 

\(=1+1\) 

\(=2\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
DD
28 tháng 4 2019 lúc 17:36

\(A=\frac{sin^2a-tan^2a}{cos^2a-cot^2a}=\frac{sin^2a-\frac{sin^2a}{cos^2a}}{cos^2a-\frac{cos^2a}{sin^2a}}=\frac{\frac{sin^2a\left(cos^2a-1\right)}{cos^2a}}{\frac{cos^2a\left(sin^2a-1\right)}{sin^2a}}=\frac{sin^4a.\left(-sin^2a\right)}{cos^4a.\left(-cos^2a\right)}=\frac{sin^6a}{cos^6a}=tan^6a\)

Bình luận (0)
DN
Xem chi tiết
AP
Xem chi tiết
AH
1 tháng 7 2023 lúc 22:27

Lời giải:
$D=\frac{1+\cos a+2\cos ^2a-1+4\cos ^3a-3\cos a}{\cos a+2\cos ^2a-1}$

$=\frac{4\cos ^3a+2\cos ^2a-2\cos a}{\cos a+2\cos ^2a-1}$

$=\frac{2\cos a(\cos a+2\cos ^2a-1)}{\cos a+2\cos ^2a-1}$

$=2\cos a$

Bình luận (0)
CN
Xem chi tiết
NT
5 tháng 6 2020 lúc 9:56

\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)

\(=2sin^2a-cos^2a-sin^4a\)

\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)

khai triển ra rồi quy đồng lên

\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)

Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)

\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)

Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)

\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)

\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)

\(=sin^2a\left(1+sin^2a\right)-1\)

\(=sin^4a-cos^2a\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
5 tháng 6 2020 lúc 9:16

viết lại đề đi cậu ơi

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
DH
20 tháng 9 2017 lúc 23:32
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân
Bình luận (0)
H24
Xem chi tiết
AH
25 tháng 4 2018 lúc 15:02

Câu a)

Từ \(\tan a=3\Leftrightarrow \frac{\sin a}{\cos a}=3\Rightarrow \sin a=3\cos a\)

Do đó:

\(\frac{\sin a\cos a+\cos ^2a}{2\sin ^2a-\cos ^2a}=\frac{3\cos a\cos a+\cos ^2a}{2(3\cos a)^2-\cos ^2a}\)

\(=\frac{\cos ^2a(3+1)}{\cos ^2a(18-1)}=\frac{4}{17}\)

Câu b)

Có: \(\cot \left(\frac{\pi}{2}-x\right)=\tan x=\frac{\sin x}{\cos x}\)

\(\cos\left(\frac{\pi}{2}+x\right)=-\sin x\)

\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)=\frac{-\sin ^2x}{\cos x}\)

Và:

\(\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{\sin x\cot x}{\cos^2x}=\frac{\sin x.\frac{\cos x}{\sin x}}{\cos^2x}=\frac{1}{\cos x}\)

Do đó:

\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)+\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{1-\sin ^2x}{\cos x}=\frac{\cos ^2x}{\cos x}=\cos x\)

Ta có đpcm.

Bình luận (0)
SK
Xem chi tiết
HB
26 tháng 4 2017 lúc 19:39

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 154 SGK Đại Số 10 | Giải toán lớp 10

Bình luận (0)
PT
Xem chi tiết