Những câu hỏi liên quan
CQ
Xem chi tiết
NC
4 tháng 1 2017 lúc 20:31

cau viet so mu kieu gi vay

Bình luận (0)
PV
20 tháng 9 2018 lúc 23:11

s= 1 -3 +3- 3-...+32014-32015

 =(1-3+32)-(33-34+35)-...-(32013-32014+32015)

 =(1-3+32)-33(1-3+32)-...-32013(1-3+32)

=7-33 *7-...-32013*7

=7*(1-33-...-32013)

có 7 chia hết cho 7,(1-33-...-32013)  là số nguyên

=> s chia hết cho 7 (đpcm)

Bình luận (0)
MS
Xem chi tiết
NM
5 tháng 2 2016 lúc 16:32

trong tổng có 1 số ko chia  hết cho 3

Bình luận (0)
H24
5 tháng 2 2016 lúc 16:35

vì tổng các chữ số trong các số trên là không chia hết cho 3

Bình luận (0)
NG
5 tháng 2 2016 lúc 16:43

Vì số lẻ cộng với số chẵn sẽ ra kết quả khong chia hết cho 3

Bình luận (0)
TL
Xem chi tiết
NA
18 tháng 10 2018 lúc 11:45

\(S=1+2+2^2+2^3+...+2^{99}\)

   \(=\left(1+2+2^2+2^3\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)

   \(=\left(1+2+4+8\right)+...+2^{96}.\left(1+2+2^2+2^3\right)\)

   \(=15+...+2^{96}.15\)

   \(=15.\left(1+...+2^{96}\right)⋮15\)

\(\Rightarrow\) \(S⋮15\)

Bình luận (0)
TD
Xem chi tiết
H9
11 tháng 8 2023 lúc 13:34

a) \(A=3+3^2+..+3^{60}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)

Vậy A chia hết cho 4

b) \(A=3+3^2+3^3+...+3^{60}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(A=13\cdot\left(3+..+3^{58}\right)\)

Vậy A chia hết cho 13

Bình luận (0)
TH
Xem chi tiết
HN
21 tháng 10 2015 lúc 19:53

Gọi 3 stn liên tiếp là: a;a+1;a+2

Ta có : a+a+1+a+2=3a+(1+2)=3a+3

Mà 3a chia hết cho 3 ; 3 chia hết cho 3 

Nên 3a+3 chia hết cho 3

Vậy tổng 3 stn liên tiếp chia hết cho 3

Bình luận (0)
PC
21 tháng 10 2015 lúc 19:54

Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2 

ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3 

Vậy 3 số tự nhiên liên tiếp chia hết cho 3

Bình luận (0)
ST
21 tháng 10 2015 lúc 19:57

Giải :

Tổng 3 STN liên tiếp bằng :

A + ( A +1 ) + ( A + 2 )

= ( A + A + A ) + ( 1 + 2 )

= 3A + 3

Mà 3A chia hết cho 3; 3 chia hết cho 3

\(\Rightarrow\)A + ( A + 1 ) + ( A + 2 ) chia hết cho 3 với mọi A ( đpcm ).

 

 

Bình luận (0)
H24
Xem chi tiết
N2
Xem chi tiết
H24
14 tháng 6 2016 lúc 9:58

Theo đề bài , ta có :

a = 3q + 1 ( q \(\in\) N )

b = 3q + 2 ( p \(\in\) N )

Do đó : a + b = ( 3q + 1 ) + ( 3p + 2 )

                        = 3q + 3p + 3

                        = 3( q + p + 1 ) \(\vdots\) 3 vì 3 \(\vdots\) 3

Vậy tổng a + b  \(\vdots\) 3

Bình luận (0)
SC
Xem chi tiết
NM
Xem chi tiết
H24
7 tháng 12 2014 lúc 20:56

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

Bình luận (0)
NM
19 tháng 1 2016 lúc 20:47

đơn giản  là không biết 

Bình luận (0)