Những câu hỏi liên quan
HA
Xem chi tiết
LF
18 tháng 9 2016 lúc 7:20

Ta có:

\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\ge x-1+0+3-x=2\)

\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)

Vậy MinB=2013 khi x=2

 

Bình luận (0)
DL
Xem chi tiết
HP
20 tháng 11 2016 lúc 11:25

1, Ta có \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\left(1\right)< =>\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)

\(< =>\left|x\right|^2+\left|y\right|^2+2\left|x\right|\left|y\right|\ge x^2+2xy+y^2\)

\(< =>2\left|x\right|\left|y\right|\ge2xy< =>\left|xy\right|\ge xy\) (dấu "=" xảy ra <=> \(xy\ge0\) )

bđt trên luôn đúng nên (1) đúng ,đpcm

ý sau tương tự

2) \(A=\left|x-2001\right|+\left|x-1\right|\ge\left|x-2001+1-x\right|=2000\)

dấu "=" xảy ra \(< =>\left(x-2001\right)\left(1-x\right)\ge0< =>1\le x\le2001\)

vậy minA=2000 khi ............

Bình luận (0)
NC
20 tháng 11 2016 lúc 11:12

2. GTNN của A = 2000

Bình luận (0)
ND
Xem chi tiết
ND
Xem chi tiết
HH
18 tháng 12 2017 lúc 12:48

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

Bình luận (0)
06
Xem chi tiết
BT
25 tháng 11 2021 lúc 12:53

Để B nhỏ nhất nên | x + 11| = 0 và | 1 -y | = 0

Với | x + 11 | = 0 thì  x + 11 = 0 nên x = -11

Với | y - 1 | = 0 thì y - 1 = 0 nên y =1

Vậy x = -11 , y =1

 

hok tốt 

Bình luận (2)
PT
Xem chi tiết
NT
19 tháng 11 2015 lúc 17:34

a) |x + 1| > 0

|x + 1| + 5 > 5

\(\Rightarrow\) min A = 5 khi x = - 1

b) \(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

x2 > 0

x2 + 3 > 3

\(\frac{1}{x^2+3}\le\frac{1}{3}\)

\(\frac{12}{x^2+3}\le4\)

\(1+\frac{12}{x^2+3}\le5\)

\(\Rightarrow\) max B = 5 khi x = 0

Bình luận (0)
LL
Xem chi tiết
XO
22 tháng 12 2019 lúc 20:38

Ta có : A = |x - 2001| + |x - 1|

               =  |x - 2001| + |1- x|

             \(\ge\) |x - 2001 + 1 - x|

               = 2000 

Dấu "=" xảy ra <=> \(\left(1-x\right)\left(x-2001\right)\ge0\)  

=> \(\hept{\begin{cases}1-x\ge0\\x-2001\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge2001\end{cases}\Rightarrow}x\in\varnothing}\)

hoặc \(\hept{\begin{cases}1-x\le0\\x-2001\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\le2001\end{cases}\Rightarrow}1\le x\le2001}\)

Vậy MIN A = 2000 <=>  \(1\le x\le2001\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
LF
10 tháng 12 2016 lúc 15:46

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2009\right|+\left|x-1\right|=\left|x-2009\right|+\left|1-x\right|\)

\(\ge\left|x-2009+1-x\right|=2008\)

Dấu "=" khi \(1\le x\le2009\)

Vậy \(Min_A=2008\) khi \(1\le x\le2009\)

Bình luận (1)
TA
Xem chi tiết