Chứng minh rằng :
3^1999 - 7^1997 chia hết cho 5
Chứng minh rằng 3^1999 - 7^1997 chia hết cho 5
Chứng minh rằng:31999 - 71997 chia hết cho 5.
Ta có:
\(3^{1999}=3^{2000}:3=\left(3^2\right)^{1000}:3=9^{1000}:3=...1:3=...7\)
\(7^{1997}=7^{1996}.7=\left(7^2\right)^{998}.7=49^{998}.7=...1.7=...7\)
Do đó: \(3^{1999}-7^{1997}=...7-...7=...0\)
Vì \(...0\)chia hết cho 5 \(\Rightarrow3^{1999}-7^{1997}\)chia hết cho 5
Nguồn: https://olm.vn/hoi-dap/detail/41637165008.html
Chúc bạn học tốt !!!
Ta có : 31999 = 31996 . 33 = (34)499 . (....7) = (....1)499 . (...7) = ...7
71997 = 71996 . 7 = (74)499 . 7 = (....1)499 . 7 = ...7
Khi đó 31999 - 71997 = ...7 - ...7 = ...0
=> \(3^{1999}-7^{1997}⋮5\left(\text{đpcm}\right)\)
Ta có:
31999=32000:331999=32000:3
=(32)1000:3=(32)1000:3
=91000:3=91000:3
=.....:3=.....7=.....:3=.....7
71997=71996.771997=71996.7
=(72)998.7=(72)998.7
=49998.7=49998.7
=.....1.7=.....7=.....1.7=.....7
Do đó: 31999−71997=.....7−.....7=.....031999−71997=.....7−.....7=.....0
Vì .....0.....0 chia hết cho 5.5.
⇒31999−71997⇒31999−71997 chia hết cho 5.5. ( đpcm )
Chứng minh rằng: 31999 - 71997 chia hết cho 5
Ta có :
31999 = 32000 : 3 = ( 32 )1000 : 3 = 91000 : 3 = ........1 : 3 = ........7
71997 = 71996 . 7 = ( 72 )998 . 7 = 49998 . 7 = .......1 . 7 = ........7
Do đó : 31999 - 71997 = .......7 - ......7 = ........0
Vì .......0 chia hết cho 5 => 31999 - 71997 chia hết cho 5
ta có:31999=31996x33=(34)499x33
vì 34 có tận cùng là 1 nên (34)499 cũng có tận cùng là 1. và 33 có tận cùn là 7
suy ra:(34)499x33 có tận cùng là 7.
ta có: 71997=71996x7=(74)499x7
vì 74 có tận cùng là 1 nên (74)499 cũng có tận cùng là 1.
suy ra:(74)499x7 có tận cùng là 7
suy ra:(34)499x33-(74)499x7 có tận cùng là 0 hay 31999-71997 có tận cùng là 0
mà số có tận cùng là 0 thì chia hết cho 5
vậy 31999-71997 chia hết cho 5
ta có:31999=31996x33=(34)499x33
vì 34 có tận cùng là 1 nên (34)499 cũng có tận cùng là 1. và 33 có tận cùn là 7
suy ra:(34)499x33 có tận cùng là 7.
ta có: 71997=71996x7=(74)499x7
vì 74 có tận cùng là 1 nên (74)499 cũng có tận cùng là 1.
suy ra:(74)499x7 có tận cùng là 7
suy ra:(34)499x33-(74)499x7 có tận cùng là 0 hay 31999-71997 có tận cùng là 0
mà số có tận cùng là 0 thì chia hết cho 5
vậy 31999-71997 chia hết cho 5
1.cho A = 999993^1999 - 555557^1997.chứng minh rằng A chia hết cho 5
2.chứng minh rằng 10^28+8 chia hết cho 72
Cho A=999993^1999-555557^1997. Chứng minh rằng : A chia hết cho 5
tìm các chữ số tận cùng của hai số trên ta có :
A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)
cho A= 99999^1999 -555557^1997. Chứng minh rằng A chia hết cho 5
sử dụng chữ số tận cùng nha bạn !!!
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
cho A= 999993^1999 - 555557^1997. chứng minh rằng A chia hết cho 5
Ta có: \(A=999993^{1999}-555557^{1997}\)
\(=999993^{1998}.999993-555557^{1996}.555557\)
\(=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(=\left(...9\right)^{999}.999993-\left(...9\right)^{998}.555557\)
\(=\left(...9\right).999993-\left(...1\right).555557\)
\(=\left(...7\right)-\left(...7\right)\)\(=\left(...0\right)\)
Chữ số tận cùng của \(A=999993^{1999}-555557^{1997}\) là \(0\).
\(\Rightarrow\)\(A=999993^{1999}-555557^{1997}⋮5\)
Cho \(A=999993^{1999}-555557^{1997}\)
Vì \(^{1999}\) có dạng \(4n+3\) nên \(999993^{1999}=\overline{...7}\)
Vì \(^{1997}\) có dạng \(4n+1\) nên \(555557^{1997}=\overline{...7}\)
Ta có: \(\overline{...7}-\overline{...7}=\overline{...0}\)
\(\overline{...0}⋮5\) \(\Rightarrow\) \(A⋮5\)
Cho A = 999993^1999 - 555557^1997
Chứng minh rằng A chia hết cho 5
Để A chia hết cho5 ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của mỗi số.
Ta có :
\(3^{1999}=\left(3^4\right)^{499}\times3^3=81^{499}\times27=......7\)
\(7^{1997}=\left(7^4\right)^{499}\times7=2041^{499}\times7=....7\)
Vậy A có chữ số tận cùng là 0 nên A chia hết cho 5
Để A chia hết cho 5 thì A phải có chữ số tận cùng là 0 hoặc 5
Ta có: (1) 9999931999=(9999934)499. 9999933
Vì 9999934 có tận cùng là 1 suy ra (9999934)499 có tận cùng là 1
9999933 có tận cùng là 7 suy ra (9999934)499. 9999933 có tận cùng là 7 ( ta nhân 2 chữ số tận cùng lại với nhau 1.7=7)
(2) 5555571997= (5555574)499 .7
Ta có 5555574 có tận cùng là 1 suy ra (5555574)499 có tận cùng là 1 nên (5555574)499.7 có tận cùng là 7
Vậy chữ số tận cùng của A là 7-7=0. Từ đây ta kết luận A chia hết cho 5
Để chứng minh A chia hết cho 5, ta xét chữ số tận cùng của A bằng việc xét chữ sốtận cùng của từng số hạng.
Ta có: 31999 = ( 34)499 . 33= 81499. 27
Suy ra: 31999 có tận cùng là 7
71997 = ( 74)499 .7 = 2041499 . 7 =>7 1997Có tận cùng là 7
Vậy A có tận cùng bằng 0 ,=>Achia hết cho 5