CMR:Tích hai số tự nhiên liên tiếp không chia hết cho 4
CMR:Tích của hai số tự nhiên liên tiếp chia hết cho 8
CMR:Tích 4 số tự nhiên chẵn liên tiếp chia hết cho 384
Chứng tỏ rằng:
A. Trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2
B. Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
C. Tổng của hai số tự nhiên liên tiếp thì không chia hết cho 2
D. Tổng của ba số tự nhiên liên tiếp là 1 số chia hết cho 3
E. Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
Chứng tỏ rằng:
a) Trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2.
b) Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3.
c) Tổng của hai số tự nhiên liên tiếp thì không chia hết cho 2
d) Tổng của ba số tự nhiên liên tiếp là 1 số chia hết cho 3
e) Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
a)vì trong hai só tự nhiên liên tiếp có một số chẵn và số lẻ nên có 1 số chia hết cho 2.
b)TH1: Nếu số đầu tiên có dạng 3k (k thuộc N) thì bài toán giải quyết xong 3k chia hết cho 3
TH2: Nếu số đầu tiên có dạng 3k +1
Thì số đó là 3k+1,3k+2,3k+3
Mà 3k+3 chia hết cho 3 nên bài toán giải quyết xong
TH3: Nếu số đầu tiên có dạng 3k +2
Thì số đó là 3k+2,3k+3,3k+4
Mà 3k+3 chia hết cho 3 nên bài toán giải quyết xong
c)Gọi 2 số tự nhiên liên tiếp đó là a,a+1
Ta có :
a+a+1=2a+1 không chia hết cho 2
Vậy tổng 2 số tự nhiên liên tiếp không chia hết cho 2
d)Gọi 3 số tự nhiên liên tiếp đó là b,b+1,b+2
Ta có :
b+b+1+b+2= 3b+3 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
e)Gọi 4 số tự nhiên liên tiếp đó là c,c+1,c+2,c+3
Ta có :
c+c+1+c+2+c+3=4c+6 không chia hết cho 4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Chứng tỏ rằng:
a) Tổng của hai số tự nhiên liên tiếp không chia hết cho 2.
b) Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
c) Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4.
b, gọi ba số tự nhiên liên tiếp là n, n+1, n+2 (n thuộc N)
ta có: n+(n+1)+(n+2)
=3n+3
=3(n+1) chia hết cho 3
Vì 3n chia hết cho 3, 3 chia hét cho 3
=>Tổng 3 ố tự nhiên liên tiếp chia hết cho 3
Cứ thé áp dụng cho bài a,c
Nếu e cần c sẽ cho cái bản lưu ý, sau này làm mấy bài này dễ không hà.
a) gọi 2 số tự nhiên liên tiếp là
n ; n+1
n + n + 1 = 2n + 1
vì 2n chia hết cho 2
1 không chia hết cho 2
=> 2n + 1 không chia hết cho 2
vậy tổng 2 số tự nhiên liên tiếp ko chia hết cho 2
Chứng tỏ rằng:
a trong 2 số tự nhiên liên tiếp có một số chia hết cho 2
b Trong 3 số tự nhiên liên tiếp có một số chia hết cho 3
c Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
d Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
e Tích của hai số chẵn liên tiếp chia hết cho 8
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
Có ai muốn làm bạn tình cùng tôi ko
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
Chứng tỏ rằng :
a) Trong hai số tự nhiên liên tiếp có một số chia hết cho 2
b) Trong ba số tự nhiên liên tiếp có một số chia hết cho 3
c) Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
d) Tổng của ba số tự nhiên lien tiếp là một số chia hết cho ba
a; hai số tự nhiên liên tiếp có dạng: n; n + 1
Nếu n \(⋮\) 2 vậy trong hai số tự nhiên liên tiếp có một số chia hết cho 2
Nếu n = 2k + 1 thì n + 1 = 2k + 1 + 1 = 2k + (1 + 1) = 2k + 2 ⋮ 2
Từ những lập luận trên ta có hai số tự nhiên liên tiếp luôn có một số chia hết cho hai
b; Ba số tự nhiên liên tiếp có dạng: n; n + 1; n + 2
Nếu n ⋮ 3 thì trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
Nếu n : 3 dư 1 hoặc 2 thì n có dạng: m = 3k + 1 hoặc n = 3k + 2
Trường hợp n = 3k + 1
khi đó n + 2 = 3k + 1 + 2 = 3k + (1 + 2) = 3k + 3 ⋮ 3
Trường hợp n = 3k + 2 thì n + 1 = 3k + 1 + 2 = 3k + (2 + 1) = 3k + 3
Từ những lập luận trên ta có:
Trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
c; Bốn số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2; n + 3
Khi đó tổng của bốn số tự nhiên liên tiếp là:
n + n + 1 + n + 2 + n + 3
= (n + n + n + n) + (1+ 2 + 3)
= 4n + (3+ 3)
= 4n + 6
= 4(n + 1) + 2 mà 2 không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
a)tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 không
b)tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 không
c)chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
d)chứng tỏ rằng trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4