Những câu hỏi liên quan
VQ
Xem chi tiết
BB
Xem chi tiết
TT
25 tháng 12 2020 lúc 19:50

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

Bình luận (0)
LG
Xem chi tiết
LD
1 tháng 10 2017 lúc 8:05

Ta có : \(x^2+y^2-2x+4y+1\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)

\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)

Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)

Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)

Vậy \(A_{min}=-4\) khi x = 1 và y = -2

Bình luận (0)
NT
Xem chi tiết
TC
Xem chi tiết
BB
Xem chi tiết
NL
25 tháng 12 2020 lúc 21:10

\(A=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-6y+9\right)+2018\)

\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2018\ge2018\)

\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

Bình luận (1)
NT
Xem chi tiết
NB
Xem chi tiết
TN
24 tháng 12 2019 lúc 18:59

biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
NH
7 tháng 4 2015 lúc 22:12

\(A=x^2+2xy+2y^2+2x-4y+2013\)

\(=\left(x^2+y^2+1+2x+2y+2xy\right)-1-2y+y^2-4y+2013\)\(=\left(x+y+1\right)^2+\left(y^2-2.y.3+9\right)-9+2012\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\)

mà \(\left(x+y+1\right)^2,\left(y-3\right)^2\ge0\)

\(\Rightarrow A=x^2+2xy+2y^2+2x-4y+2013=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\ge2003\)

\(\Rightarrow Min\left(A\right)=2003\)

Bình luận (0)
ND
17 tháng 10 2016 lúc 20:02

còn thiếu: khi y=3 và x= -y-1

Bình luận (0)
BK
Xem chi tiết
NH
6 tháng 7 2015 lúc 15:31

\(=\left(x^2+4x+4\right)+\left(y^2+4y+4\right)+\left(x^2-2xy+y^2\right)+2=\left(x+2\right)^2+\left(y+2\right)^2+\left(x-y\right)^2+2\ge2\)

=> Min =2 <=> x=y=-2

Bình luận (0)