Những câu hỏi liên quan
NK
Xem chi tiết
HN
2 tháng 11 2016 lúc 19:17

ĐKXĐ : \(x\ge1\)

\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(=\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|\)

Xét các trường hợp : 

1. Nếu \(1\le x\le2\)thì \(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\left(1-\sqrt{x-1}\right)=2\sqrt{x-1}\le2\)

2. Nếu \(x>2\) thì 

\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

Gộp hai trường hợp có đpcm.

Bình luận (0)
NK
2 tháng 11 2016 lúc 19:24

Liệu còn cách nào khác nữa ko bạn???

Bình luận (0)
TD
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TT
23 tháng 8 2017 lúc 20:23

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+2xy\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\Rightarrow1\ge4xy\Leftrightarrow xy\le\frac{1}{4}\)(1)

\(\left(x-y\right)^2\ge0\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge2\Leftrightarrow x+y\ge\sqrt{2}\)

Bình luận (0)
TN
23 tháng 8 2017 lúc 21:00

Từ phần a ta có \(x+y\le\sqrt{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2\)

\(\le\left(1+1\right)\left(2\left(x+y\right)+2\right)\)

\(=2\cdot\left(2\left(x+y\right)+2\right)\le2\cdot\left(2\sqrt{2}+2\right)\)

\(=4\sqrt{2}+4=VP^2\)

Suy ra \(VT\ge VP\) (ĐPCM)

Bình luận (0)
KH
Xem chi tiết
NH
28 tháng 6 2018 lúc 10:55

\(2\le\sqrt{x}+\sqrt{4-x}\le2\sqrt{2}\) (1) (ĐK: \(\left\{{}\begin{matrix}x\ge0\\4-x\ge0\end{matrix}\right.\)\(\Leftrightarrow0\le x\le4\))

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}2\le\sqrt{x}+\sqrt{4-x}\\\sqrt{x}+\sqrt{4-x}\le2\sqrt{2}\end{matrix}\right.\) (\(0\le x\le4\))

\(\Leftrightarrow\left\{{}\begin{matrix}4\le4+2\sqrt{x\left(4-x\right)}\\4+2\sqrt{x\left(4-x\right)}\le8\end{matrix}\right.\) (\(0\le x\le4\))

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x\left(4-x\right)}\ge0\\\sqrt{x\left(4-x\right)}\le2\end{matrix}\right.\)(\(0\le x\le4\))

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4-x\right)\le4\\0\le x\le4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\0\le x\le4\end{matrix}\right.\) (đpcm)

Bình luận (0)
NN
Xem chi tiết
H24
12 tháng 5 2021 lúc 16:57

đkxđ:\(\left[ \begin{array}{l}x \geq 2\\x \leq -1\end{array} \right.\) 

`bpt<=>\sqrt{x-1}(\sqrt{x+1}+\sqrt{x-1}-2\sqrtx)<=0`

Vì `\sqrt{x-1}>=1>0`

`=>\sqrt{x+1}+\sqrt{x-1}-2\sqrtx<=0`

`<=>\sqrt{x+1}+\sqrt{x-1}<=2\sqrtx`

BP 2 vế

`=>2x+2\sqrt{x^2-1}<=4x`

`<=>>\sqrt{x^2-1}<=x`

`<=>x^2-1<=x^2`(luôn đúng)

Vậy với \(\left[ \begin{array}{l}x \geq 2\\x \leq -1\end{array} \right.\)  thì.......

Bình luận (0)
VC
Xem chi tiết
HN
3 tháng 10 2017 lúc 16:07

\(A=\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)

\(\Leftrightarrow\sqrt{\dfrac{1}{1+\dfrac{y}{4x}+\dfrac{y^2}{x^2}}}+\sqrt{\dfrac{1}{1+\dfrac{z}{4y}+\dfrac{z^2}{y^2}}}+\sqrt{\dfrac{1}{1+\dfrac{x}{4z}+\dfrac{x^2}{z^2}}}\le2\)

Đặt \(\left\{{}\begin{matrix}\dfrac{y}{x}=a\\\dfrac{z}{y}=b\\\dfrac{x}{z}=c\end{matrix}\right.\) thì bài toán thành

Chứng minh: \(A=\dfrac{1}{\sqrt{4a^2+a+4}}+\dfrac{1}{\sqrt{4b^2+b+4}}+\dfrac{1}{\sqrt{4c^2+c+4}}\le1\) với \(abc=1\)

Thử giải bài toán mới này xem sao bác.

Bình luận (6)
LF
3 tháng 10 2017 lúc 18:58

*C/m bài toán mới của HUngnguyen

Ta có BĐT phụ \(\dfrac{1}{\sqrt{4a^2+a+4}}\le\dfrac{a+1}{2\left(a^2+a+1\right)}\)

\(\Leftrightarrow\left(a+1\right)^2\left(4a^2+a+4\right)\ge4\left(a^2+a+1\right)^2\)

\(\Leftrightarrow a\left(a-1\right)^2\ge0\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\dfrac{1}{\sqrt{4b^2+b+4}}\le\dfrac{b+1}{2\left(b^2+b+1\right)};\dfrac{1}{\sqrt{4c^2+c+4}}\le\dfrac{c+1}{2\left(c^2+c+1\right)}\)

CỘng theo vế 3 BĐT trên ta có;

\(VT\le1=VP\) * Chỗ này tự giải chi tiết ra nhé, giờ bận rồi*

Bình luận (0)
NT
3 tháng 10 2017 lúc 19:00

Bài này công kềnh vậy thôi thực ra nhìn cái là ra nó là hệ quả của BĐT Vasc của cụ Vasile Bat dang thuc Vasc.pdf

Bình luận (1)
TG
Xem chi tiết
TN
27 tháng 2 2020 lúc 22:31

ĐKXĐ:\(-1\le x\le1\)

Khi đó bình phương hai vế của bpt ta có:

\(2x+2\sqrt{x^2-x^2+1}\le4\Leftrightarrow x\le1\)

Kết hợp vs đkxđ ta được:\(-1\le x\le1\)

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
GV
9 tháng 7 2017 lúc 16:16

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

Bình luận (0)