Tìm x, y, zbiết:
4/x+1=2/x-2=3/z+2 và x,y.z=12
Tìm x,y,zbiết: 3(x-1)=2(y-2),4(y-2)=3(z-3) và 2x+3y-z=50
Lời giải:
$3(x-1)=2(y-2); 4(y-2)=3(z-3)$
$\Rightarrow \frac{x-1}{2}=\frac{y-2}{3}; \frac{y-2}{3}=\frac{z-3}{4}$
$\Rightarrow \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
Áp dụng TCDTSBN:
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
$=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}$
$=\frac{2x-2+3y-6-(z-3)}{4+9-4}$
$=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5$
$\Rightarrow x-1=10; y-2=15; z-3=20$
$\Rightarrow x=11; y=17; z=23$
2 số x và y, biết x/y= y/-5 và x-y=16. Cho tỉ lệ thức x/3=y/4 và x.y=12. Tìm x,y cho 3 số x,y,z thỏa mãn x.y=-30, y.z=42 và z-x=-12. Tính x,y,z
giúp vs ak
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
Cho hai đơn thức:(-6.x^2.y.z) và (2/3.x^2.y)
a, Tính tích của hai đơn thức
b, Tìm phần biến , bậc của tích trên
c, tính giá trị của (-6.x^2.y.z) tại x=-1; y=1/3 và z=-2
Cho hai đơn thức:(-6.x^2.y.z) và (2/3.x^2.y)
a, Tính tích của hai đơn thức
(-6.x^2.y.z) . (2/3.x^2.y)
= (-6.x^2.y.z) . (2/3.x^2.y)
= (-6.2/3).(x^2.x^2).(y.y).z
= -4. x^4. y^2 .z
b, Tìm phần biến , bậc của tích trên
Phần biến là -4
bậc của tích trên là : 4+2+1= 7
c, tính giá trị của (-6.x^2.y.z) tại x=-1; y=1/3 và z=-2
thay x=-1; y=1/3 và z=-2 vào (-6.x^2.y.z) ta có:
-6.\(\left(-1\right)^2.\dfrac{1}{3}.-2\)
=4
học tốt :D
1.Tìm x,y,z (nếu có) biết:
a) \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\)và x2+y2=2000
b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
c) x.y=6;y.z=12 và x−z=−2
a/ \(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)
\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)
b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
c/ \(\hept{\begin{cases}xy=6\\yz=12\end{cases}}\)
\(\Rightarrow\frac{z}{x}=\frac{12}{6}=2\)
\(\Rightarrow z=2x\)
Thế vô \(x-z=-2\) được
\(x-2x=-2\)
\(\Leftrightarrow x=2\)
\(\Rightarrow\hept{\begin{cases}z=4\\y=3\end{cases}}\)
1. Cho tỉ lệ thức x/3 = y/4 và x.y = 12. Tìm x, y
2. Cho ba số x, y, z thỏa mãn x.y = -30; y.z = 42 và z-x = -12. Tính x, y, z
3.Tìm hai số x và y, biết: x/3 = y/-5 và x-y = 16
Cảm ơn các bạn
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
cho x phần 2 = y phần 3 = z phần 5. tìm x;y;zbiết
x-2y + 3z=22
xyz=240
x^2+3y^2-z^2=150
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
nên \(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}\)
mà x-2y+3z=22
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2-6+15}=\dfrac{22}{11}=2\)
Do đó:
\(\left\{{}\begin{matrix}x=4\\2y=12\\3z=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=10\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Ta có: xyz=240
\(\Leftrightarrow2\cdot3\cdot5\cdot k^3=240\)
\(\Leftrightarrow k^3=8\)
hay k=2
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=10\end{matrix}\right.\)
cho x phần 2 = y phần 3 = z phần 5. tìm x;y;zbiết
x-2y + 3z=22
xyz=240
x^2+3y^2-z^2=150
Tham khảo:cho x phần 2 = y phần 3 = z phần 5. tìm x;y;zbiết x-2y + 3z=22xyz=240x^2+3y^2-z^2=150 - Hoc24
tìm các số hữu tỉ x,y,z thỏa mãn:
a, x+y= -7/6 ;y+z =1/4 ; x+z= 1/2.
b, x.y=1/3 ;y.z= -2/5 ; x.z= -3/10
a,Ta có: x+y= -7/6 và y+z= 1/4
=>x+y+y+z= -7/6 +1/4
=>x+z+2y= -11/12
=>1/2+2y= -11/12
=>2y= -11/12 -1/2
=>2y= -17/12
=>y= -17/24
Mà x+y=-7/6 =>x= -7/6+17/24= -11/24
x+z=1/2 =>z=1/2+11/24=23/24
Ta có: \(x+y=-\frac{7}{6};y+z=\frac{1}{4};x+z=\frac{1}{2}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(\Rightarrow2x+2y+2z=-\frac{28}{24}+\frac{6}{24}+\frac{12}{24}\)
\(\Rightarrow2\left(x+y+z\right)=-\frac{5}{12}\)
\(\Rightarrow x+y+z=-\frac{5}{12}:2\)
\(\Rightarrow x+y+z=-\frac{5}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+y\right)=-\frac{5}{24}+\frac{7}{6}\Rightarrow z=-\frac{5}{24}+\frac{28}{24}=\frac{23}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(y+z\right)=-\frac{5}{24}-\frac{1}{4}\Rightarrow x=-\frac{5}{24}-\frac{6}{24}=-\frac{11}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+z\right)=-\frac{5}{24}-\frac{1}{2}\Rightarrow y=-\frac{5}{24}-\frac{12}{24}=-\frac{17}{24}\)
Vậy \(x=\frac{23}{24};y=-\frac{17}{24};z=-\frac{11}{24}\)
Chuk pạn hok tốt!
b,Ta có: x.y=1/3 và y.z= -2/5
=>x.y.y.x=1/3.(-2/5)
=>x.z.y^2= -2/15
=>-3/10.y^2= -2/15
=>y^2=4/9
=>y=2/3
Mà x.y=1/3 =>x=1/3:2/3=1/2
x.z= -3/10 =>z= -3/10:1/2 = -3/5
\(x+y+1=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Và x.y.z=180
tìm x,y.z