Những câu hỏi liên quan
DT
Xem chi tiết
KA
18 tháng 7 2017 lúc 20:38

Có : \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Theo tính chất dãy tỉ số , có :

\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u+2+u-2}{v+3+v-3}=\frac{u+2-u+2}{v+3-v+3}\)

\(\Rightarrow\frac{2u}{2v}=\frac{4}{6}\)

\(\Leftrightarrow\frac{u}{v}=\frac{2}{3}\Leftrightarrow\frac{u}{2}=\frac{v}{3}\)

Bình luận (0)
HM
18 tháng 7 2017 lúc 20:41

Ta có:

  \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> (u+2).(v-3)=(u-2).(v+3)

<=>uv+2v-3u-6=uv-2v+3u-6

<=>2v-3u=3u-2v

<=>2v+2v=3u+3u

<=>4v=6u

<=>2v=3u

<=>\(\frac{u}{2}=\frac{v}{3}\)

Bình luận (0)
An
18 tháng 7 2017 lúc 20:42

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
nhân chéo,ta có
         (u+2)(v-3)=(u-2)(v+3)
<=> uv-3u+2v-6=uv+3u-2v-6          
=>   uv-3u+2v-6-uv-3u+2v+6=0
<=> -6u+4v=0
<=> 4v      =6u
<=> 2v      =3u
<=> \(\frac{u}{2}=\frac{v}{3}\)(đpcm)

Bình luận (0)
NP
Xem chi tiết
PT
18 tháng 9 2016 lúc 21:39

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)

\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)

Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.

Bình luận (0)
SK
9 tháng 8 2016 lúc 15:57

Mình lí luận ngược nha :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

Bình luận (0)
NL
Xem chi tiết
SG
28 tháng 9 2016 lúc 20:55

Ta có:

\(\frac{u}{v}=\frac{v}{t}\Rightarrow\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u}{v}.\frac{v}{t}=\frac{u}{t}\) (1)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{u^2}{v^2}=\frac{v^2}{t^2}=\frac{u^2+v^2}{v^2+t^2}\) (2)

Từ (1) và (2) => \(\frac{u^2+v^2}{v^2+t^2}=\frac{u}{t}\left(đpcm\right)\)

Bình luận (1)
LY
Xem chi tiết
NT
18 tháng 5 2016 lúc 17:06

Ta có:

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> \(\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)

<=> \(uv+2v-3u-6=uv-2v+3u-6\)

<=> \(2v-3u=3u-2v\)

<=> \(2v+2v=3u+3u\)

<=> \(4v=6u\)

<=> \(2v=3u\)

<=> \(\frac{u}{2}=\frac{v}{3}\)

Bình luận (0)
LD
18 tháng 5 2016 lúc 17:10

Ta có:


\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)

Bình luận (0)
NA
Xem chi tiết
AN
Xem chi tiết
H24
19 tháng 12 2018 lúc 19:58

áp dụng t/c DTSBN,ta có:

\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)

\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)

\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)

từ (!) và (@) => đpcm

Bình luận (0)
NA
Xem chi tiết
NT
11 tháng 1 2017 lúc 18:00

Giải:

Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)

\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)

Vậy \(\frac{u}{2}=\frac{v}{3}\)

Bình luận (0)
NA
11 tháng 1 2017 lúc 17:46

thừa cái dòng chữ cuối cùng nhá

Bình luận (0)
BD
Xem chi tiết
EC
21 tháng 7 2019 lúc 21:44

a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)

=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)

=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)

=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)

=>  x + 1 = 0

=> x = -1

Bình luận (0)
EC
21 tháng 7 2019 lúc 21:57

b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)

=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)

=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)

=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

=> x - 2021 = 0

=> x = 2021

c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)

=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)

=> \(-\frac{1}{12}x+6=7\)

=> \(-\frac{1}{12}x=1\)

=> x = -12

Bình luận (0)
NH
Xem chi tiết
TK
11 tháng 5 2019 lúc 17:09

Câu 2 sai đề, thử rồi

Bình luận (0)