x : (3x-4)10-3=1201
(2+4+6+8+10+...+1200+1201+1202):2=?
đây mk làm đầy đủ
khoảng cách giữa các số hạng: 4-2=2
số các số hạng : ( 1202-2):2+1=601
tổng các số:( 1202+2).601:2=361802
=> 361802:2= 180901
tính tổng dãy số trong ngoặc rồi chia 2 bằng180901
Tính:
1+2+3+4+......+1200+1201+1202
SSH:(1202-1):1+1=1202
TỔNG:(1202+1).1202:2=723003
Tổng đó có số số hạng là:
(1202 - 1) : 1 + 1 = 1202 (số)
Tổng là:
\(\frac{\text{(1202+1)}\times1202}{2}=723003\)
Tìm x biết: x - 659 = 1201
x - 659 = 1201
x = 1201 + 659
x = 1860
Tìm x biết : x - 659 = 1201
4/5 của 1201 :
giúp mình với
\(\dfrac{4804}{5}\)= 960,8
\(\dfrac{4}{5}.1201=\dfrac{4804}{5}=960,8\)
4(x-3)-8x(x-3)=0
5x(x-7)-10(7-x)=0
2x-8=3x(x-4)
3x(x-5)=10-2x
6x(x-3)-3(3-x)=0
x^2(x+4)+9(-x-4)=0
giup voi dang can gap a
\(4\left(x-3\right)-8x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(4-8x\right)=0\\ \Leftrightarrow2\left(1-2x\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ 5x\left(x-7\right)-10\left(7-x\right)=0\\ \Leftrightarrow\left(x-7\right)\left(5x+10\right)=0\\ \Leftrightarrow5\left(x+2\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\\ 2x-8=3x\left(x-4\right)\\ \Leftrightarrow2\left(x-4\right)-3x\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(2-3x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\\ 3x\left(x-5\right)=10-2x\\ \Leftrightarrow3x\left(x-5\right)+2\left(x-5\right)=0\\ \Leftrightarrow\left(3x+2\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=5\end{matrix}\right.\\ 6x\left(x-3\right)-3\left(3-x\right)=0\\ \Leftrightarrow\left(6x+3\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
\(x^2\left(x+4\right)+9\left(-x-4\right)=0\\ \Leftrightarrow\left(x^2-9\right)\left(x+4\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=-4\end{matrix}\right.\)
\(\left(4-8x\right)\left(x-3\right)=0\)
\(\left[{}\begin{matrix}4-8x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\3\end{matrix}\right.\)
\(2\left(x-4\right)-3x\left(x-4\right)=0\)
\(\left(2-3x\right)\left(x-4\right)=0\)
\(\left[{}\begin{matrix}2-3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)
1. |-3x|= x+5
2. 10-|x+1|=3x+5
3.2x+3/-4 ≥ 4-x/-3
1: Ta có: |-3x|=x+5
\(\Leftrightarrow\left[{}\begin{matrix}-3x=x+5\left(x\le0\right)\\3x=x+5\left(x>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-x=5\\3x-x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-4x=5\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{4}\left(nhận\right)\\x=\dfrac{5}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{5}{4};\dfrac{5}{2}\right\}\)
2: Ta có: \(10-\left|x+1\right|=3x+5\)
\(\Leftrightarrow\left|x+1\right|=10-3x-5\)
\(\Leftrightarrow\left|x+1\right|=-3x+5\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=-3x+5\left(x\ge-1\right)\\-x-1=-3x+5\left(x< -1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3x=5-1\\-x+3x=5+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=4\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Vậy:S={1}
3: Ta có: \(\dfrac{2x+3}{-4}\ge\dfrac{4-x}{-3}\)
\(\Leftrightarrow\dfrac{-2x-3}{4}\ge\dfrac{x-4}{3}\)
Suy ra: \(3\left(-2x-3\right)\ge4\left(x-4\right)\)
\(\Leftrightarrow-6x-9-4x+16\ge0\)
\(\Leftrightarrow-10x\ge-7\)
hay \(x\le\dfrac{7}{10}\)
Vậy: S={x|\(x\le\dfrac{7}{10}\)}
4 * ( x + 10 ) +5 = 2 * ( 3x + 10 - 2
5 * (x-2) -3 = 2* (x-1)+9
5x*(x-3)-2*(3-x)=0
2x*(3x-3)+4=3x(2x+1)-1
(x-4)(x+1)-x2 +1=0
(3x-2)2 - (x+5)2 =0
4*(x+1)=3+2x
c)3x^2-7x-10=0
d)2x(x-10)-x+10=0
e)3x^3+7x^2+17x+5=0
f)(2x-1)^2-(x-3)^2=0
g)x^3-5x^2+8x=4
c, \(3x^2-7x+10=0\)
\(\Leftrightarrow3x^2+3x-10x+10=0\)
\(\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{3}\end{matrix}\right.\)
d, \(2x\left(x-10\right)-x+10=0\)
\(\Leftrightarrow2x\left(x-10\right)-\left(x-10\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{1}{2}\end{matrix}\right.\)