Phân tích đa thức thành nhân tử(Phương pháp thêm bớt hạng tử):
a)x^4+64
b)4x^4+1
c)64x^4+1
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử
a)x^4+1
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-2x^2\)
\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
\(x^4+1\)
dùng phương pháp thêm bớt cùng một hạng tử để phân tích đa thức thành nhân tử
\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
bằng sau này bn nhá
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt 1 hạng tử
a. y^4+64
b. x^2+4
c. x^4+16
d.x^4y^4+4
e. 4x^4y^4+1
y^4+64
=(y^2)^2+16y^2+64-16y^2
=(y^2+8-4x)(x^2+8+4x)
x^2+4
=x^2+2x^2+4-2x^2
=(x+2)^2-2x^2
=(x^2+2-2x)(x^2+2+2x)
x^4+16
=(x^2)^2+4x^2+16-4x^2
=(x+4)^2-4x^2
=(x^2+4-4x)(x^2+4+4x)
x^4y^4+4
=x^4y^4+4x^4+2^2-4x^4
=(x^4y^4+2)^2-(2x^2)^2
=(x^4y^4+2+2x^2)(x^4y^4+2-2x^2)
4x^4y^4+1
=4x^4y^4+x^4+1-x^4
=(2x^4y^4+1)^2-(x^2)^2
=(2x^4y^4+1-x^2)(2x^4y^4+1+x^2)
Mình ko bt câu D đúng hay sai nữa. Mà lỡ sai bạn đừng giận mình nha!
Phân tích đa thức thành nhân tử:
x^8+x^4+1 bằng phương pháp thêm bớt hạng tử x^2
\(x^8+x^4+1\)
\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)
\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)
Phân tích đa thức thành nhân tử
x^4+2x^2-24bằng phuong pháp thêm bớt hạng tử 4x^2
\(x^4+2x^2-24\)
\(=x^4-4x^2+6x^2-24\)
\(=x^2\left(x^2-4\right)+6\left(x^2-4\right)\)
\(=\left(x^2+6\right)\left(x^2-4\right)\)
\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp tách hoặc thêm bớt hạng tử: x^3 - 3x^2 - 4
phân tích đa thức thành nhân tử bằng phương pháp thêm- bớt hạng tử :
x^4 +4
A^4 + 64
x^5 + x + 1
x^5 + x - 1
x^4+4=x^4 + 4x^2 +4 - 4x^2=(x^2)^2+ 2.x^2.2+2^2 - (2x)^2 = (x^2+2)-(2x)^2 =(x^2+2-2x)(2^2+2-2x)
\(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(x^5+x+1=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)