Chứng minh:
a) (x-1).(x^2+x+1)=x^3-1
b) (x^3+X^2.y+x.y^2+y^3).(x-y)=x^4-y^4
1. Biết x+y=3 ; x.y=1. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
2. Biết x+y=4 ; x.y=2. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
trả lời ngay cho mình nhé
bài 1 tìm x thuộc Z
a) x^2+2.x=0
b) (-2.x).(-4.x)+28=100
c) 5.x.(-x)^2+1=6
d) 3.x^2+12.x=0
e) 4.x.3=4.x
bài 2: tìm x,y thuộc Z
a) (x+2).(x-1)=0
b) (y+1).(x.y-1)=3
c) 2.x.y+x-6.y=15
d) x.y+2.x-y+9
e)3.x.y-y=-12
g) 3.x.y-3.x-y=0
h) 5.x.y+5.x+2.y =-16
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
d, 3\(x^2\) + 12\(x\) = 0
3\(x.\left(x+4\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 0}
e, 4.\(x.3\) = 4.\(x\)
12\(x\) - 4\(x\) = 0
8\(x\) = 0
\(x\) = 0
Tìm nghiệm nguyên của phương trình :
1, x^2 - x.y + y^2=2.x - 3.y - 2
2, 2.x.y +2.x +y +1 >= ( lớn hơn hoặc bằng ) 4.x^2 + y^2
3. 2.x^2 + y^2 -2.x.y +y=0
4. x^2 + y^2 + x.y - 2.x - y =0
Tìm x và y biết :
1) x/3 = y/4 và x^2 + y^2 = 100
2) x/4 = y/3 và x.y = 10
3) x/5 = y/3 và x^2 -y^3 =1 6
4) x/2 = y/5 và x.y = 10
5) x/5 = y/4 và x^2 . y =100
6) 4x = 3y và x^2 + y^2 =100
7) x/3 = y/7 và x^2 + y^2 = 58
8) x/3 = y/4 và 2x^2 -3y^2 = -120
9) x/3 = y/2 và 3x^2 - 5y^2 = -20
Giải các hệ phương trình sau:
a.{ x + 4y = -11
{ 5x - 4y = 1
b.{ 2x - y = 7
{ 3x + 5y + 22 = 0
c.{ 2(x - 2) + 3(1 + y) = 2
{ 3(x - 2) - 2(1 + y) = -3
d.{ (x - 5)(y - 2) = (x + 2)(y - 1)
{ (x - 4)(y + 7) = (x - 3)(y + 4)
e.{ 1/x - 1/y = 1
{ 3/x + 4/y = 5
a: \(\left\{{}\begin{matrix}x+4y=-11\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=-10\\x+4y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=\dfrac{-11-x}{4}=\dfrac{-11+\dfrac{5}{3}}{4}=-\dfrac{7}{3}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x-y=7\\3x+5y=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-3y=21\\6x+15y=-66\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-18y=78\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13}{3}\\x=\dfrac{y+7}{2}=\dfrac{4}{3}\end{matrix}\right.\)
Tình số nguyên x và y, biết:
1 - (x+1).(y-2) = 0
2 - (x-5).(y-7) = 1
3 - (x+4).(y-2) = 2
4 - x.y + x + y = 2
5 - 3x + 4y - x.y = 15
Nhanh = tick <3
\(\left(x+1\right)\left(y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}}\)
Vậy .........
\(\left(x-5\right)\left(y-7\right)=1\)
\(\Rightarrow\left(x-5\right);\left(y-7\right)\inƯ\left(1\right)=\left\{-1;1\right\}\)
Xét các trường hợp
\(\hept{\begin{cases}x-5=1\\y-7=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}}\)\(\hept{\begin{cases}x-5=-1\\y-7=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}}\)Vậy \(\orbr{\begin{cases}\left(x;y\right)=\left(6;8\right)\\\left(x;y\right)=\left(4;6\right)\end{cases}}\)
\(\left(x+4\right)\left(y-2\right)=2\)
\(\Rightarrow\left(x+4\right);\left(y-2\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Xét các trường hợp :
\(\hept{\begin{cases}x+4=1\\y-2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=4\end{cases}}\)\(\hept{\begin{cases}x+4=2\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)\(\hept{\begin{cases}x+4=-1\\y-2=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)\(\hept{\begin{cases}x+4=-2\\y-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=1\end{cases}}\)Vậy...........
Bài 1: Tìm x,y thuộc Z:
1, x.(y-2)+y=8
2, x.(y-3)+2.y=9
3, x.(2.y-1)+y=10
4, x.y+x+y=11
5,2.x.y+x-y=12
1) x.(y - 2) + (y - 2) = 6
=> (x + 1)(y - 2) = 6 = 1 . 6 = 6. 1 = -1 . (-6) = -6 . (-1) = 2 . 3 = 3 . 2 = -2 . (-3) = (-3) . (-2)
Lập bảng :
x + 1 | 1 | -1 | 6 | -6 | 2 | -2 | 3 | -3 |
y - 2 | 6 | -6 | 1 | -1 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 5 | -7 | 1 | -3 | 2 | -4 |
y | 8 | -4 | 3 | 1 | 5 | -1 | 3 | 1 |
Vậy ...
1, x.(y+1)+2.(y+1)=7
(x+2).(y+1)=7
Ta có bảng
x+2 | 1 | -1 | 7 | -7 |
y+1 | 7 | -7 | 1 | -1 |
x | -1 | -3 | 5 | -9 |
y | 6 | -8 | 0 | -2 |
Vậy ...
a,|x-3|+|2-y|<hoặc=0
b,|x-y+1|+|3-x|<hoặc=0
c,x+y+x.y=-9
d,5.x.y-5.x+y=5
e,(5.x+1).(y-1)=4
f,(2.x-1).(4.y+2)=-42
giúp đỡ mình với nha!
Tìm x,y,z biết :
1) -5/2x+1=-3/x-2
2 ) x/-2=y/-3 và x.y=54
3) |2/5.√x-1/3|-2/5=3/5
4) 3x=2y, 7y=5z và x-y+z=32
5) x/5=y/3 và x^2-y^2=4
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
Để giải từng phương trình:
1) \( -\frac{5}{2}x + 1 = -\frac{3}{x} - 2 \)
Đưa về cùng một cơ sở:
\[ -5x + 2 = -6 - 2x \]
\[ -5x + 2x = -6 - 2 \]
\[ -3x = -8 \]
\[ x = \frac{8}{3} \]
2) \( \frac{x}{-2} = \frac{y}{-3} \) và \( x \cdot y = 54 \)
Từ phương trình thứ nhất:
\[ x = -\frac{2y}{3} \]
Thay vào phương trình thứ hai:
\[ (-\frac{2y}{3}) \cdot y = 54 \]
\[ -\frac{2y^2}{3} = 54 \]
\[ y^2 = -\frac{81}{2} \]
Phương trình không có nghiệm thực vì \( y^2 \) không thể là số âm.
3) \( | \frac{2}{5} \cdot \sqrt{x} - \frac{1}{3} | - \frac{2}{5} = \frac{3}{5} \)
Đưa \( \frac{2}{5} \) về chung mẫu số với \( \frac{1}{3} \):
\[ | \frac{6\sqrt{x}}{15} - \frac{5}{15} | = \frac{3}{5} + \frac{2}{5} \]
\[ | \frac{6\sqrt{x} - 5}{15} | = \frac{5}{5} \]
\[ |6\sqrt{x} - 5| = 3 \]
Giải phương trình trên:
\[ 6\sqrt{x} - 5 = 3 \] hoặc \( 6\sqrt{x} - 5 = -3 \)
\[ 6\sqrt{x} = 8 \] hoặc \( 6\sqrt{x} = 2 \)
\[ \sqrt{x} = \frac{4}{3} \] hoặc \( \sqrt{x} = \frac{1}{3} \)
\[ x = \frac{16}{9} \] hoặc \( x = \frac{1}{9} \)
4) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)
Từ phương trình 1:
\[ x = \frac{2}{3}y \]
Từ phương trình 2:
\[ z = \frac{7}{5}y \]
Thay vào phương trình 3:
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]
\[ \frac{2}{3}y - \frac{3}{3}y + \frac{7}{5}y = 32 \]
\[ (\frac{2}{3} - 1 + \frac{7}{5})y = 32 \]
\[ (\frac{10}{15} - \frac{15}{15} + \frac{21}{15})y = 32 \]
\[ (\frac{10 - 15 + 21}{15})y = 32 \]
\[ (\frac{16}{15})y = 32 \]
\[ y = 20 \]
Thay vào phương trình 1 và 2:
\[ x = \frac{2}{3} \cdot 20 = \frac{40}{3} \]
\[ z = \frac{7}{5} \cdot 20 = 28 \]
5) \( \frac{x}{5} = \frac{y}{3} \) và \( x^2 - y^2 = 4 \)
Từ phương trình 1:
\[ x = \frac{5}{3}y \]
Thay vào phương trình 2:
\[ (\frac{5}{3}y)^2 - y^2 = 4 \]
\[ \frac{25}{9}y^2 - y^2 = 4 \]
\[ (\frac{25}{9} - 1)y^2 = 4 \]
\[ (\frac{25 - 9}{9})y^2 = 4 \]
\[ (\frac{16}{9})y^2 = 4 \]
\[ y^2 = \frac{9}{4} \]
\[ y = \frac{3}{2} \]
Thay vào phương trình 1:
\[ x = \frac{5}{3} \cdot \frac{3}{2} = \frac{5}{2} \]
Vậy, giải hệ phương trình ta được:
1) \( x = \frac{8}{3} \)
2) Phương trình không có nghiệm thực.
3) \( x = \frac{16}{9} \) hoặc \( x = \frac{1}{9} \)
4) \( x = \frac{40}{3} \), \( y = 20 \), \( z = 28 \)
5) \( x = \frac{5}{2} \), \( y = \frac{3}{2} \)