Những câu hỏi liên quan
TN
Xem chi tiết
LN
Xem chi tiết
LN
13 tháng 6 2020 lúc 23:26

@Nguyễn Việt Lâm

Bình luận (0)
NL
13 tháng 6 2020 lúc 23:44

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
NV
Xem chi tiết
HK
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Bình luận (0)
DT
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Bình luận (0)
NV
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Bình luận (0)
LN
Xem chi tiết
NL
13 tháng 6 2020 lúc 17:19

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

Bình luận (0)
H24
Xem chi tiết
TA
Xem chi tiết
H24
5 tháng 6 2019 lúc 22:03

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

Bình luận (0)
LD
6 tháng 6 2019 lúc 7:57

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

Bình luận (0)
NT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
PT
1 tháng 9 2017 lúc 20:24

Ta có:

\(VT=\dfrac{x^2}{x^3-xyz-2013x}+\dfrac{y^2}{y^3-xyz-2013y}+\dfrac{z^2}{z^3-xyz-2013z}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz-2013.\left(z+y+z\right)}\)

\(VT=\dfrac{\left(x+y+x\right)^2}{x^3+y^3+z^3+3\left[\left(x+y+z\right).\left(xy+yz+xz\right)-xyz\right]}\)

\(VT=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}\)

\(VT=\dfrac{1}{x+y+z}=VP\)

\(\Rightarrow\) Đpcm.

Bình luận (0)
MT
Xem chi tiết
VL
11 tháng 6 2016 lúc 17:46

chứng minh cái gì đấy hả bạn ơi ?

Bình luận (0)
MT
11 tháng 6 2016 lúc 17:47

akl quên vế sau

Bình luận (0)
TN
13 tháng 6 2016 lúc 19:21

bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx 

Bình luận (0)