cho tam giác abc tìm m s cho | vecto ma+ vecto mb|= |vecto ma + vecto mc|
Cho tam giác ABC . Tìm tập hợp điểm M thỏa mãn :
a) |vecto MA+ vecto MC | = |vecto MA- vecto MB|
b) |2 vecto MA + vecto MB | = |4 vecto MB - vecto MC |
c) |4 vecto MA - vecto MB + vecto MC |=|2 vecto MA - vecto MB - vecto MC |
Cảm ơn trc , ai đó có thể giúp mình nhanh được không ạ , tại mình đang cần gấp :)))
MA+MC= MA-MB
<=> 2 MI=BA
=> MI=BA/2
=> I thuộc đường tròn I bán kính AB/2
nãy mk quên giải thik:
a, gọi I la trung điểm của AC=> MA+MC=2MI
hok tốt
b, 2MA+MB=4MB-MC
gọi I: 2OA+IB=0
gọi J: 4JB-JC=0
có:
3MI=3MJ
MI=MJ
=> M thuộc đường trung trục của IJ
Cho tam giác ABC Xác định vị trí điểm M sao cho vecto MA - vecto MB + vecto MC = vecto 0
Ta thấy \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}=\overrightarrow{CM}\)
Như vậy, điểm M chính là đỉnh thứ tư của hình bình hành ABCM.
Cho tam giác ABC trọng tâm G CMR: vecto MG = 1/3( vecto MA + vecto MB + vecto MC) với M bất kì
Xét ΔABC có G là trọng tâm
nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\dfrac{1}{3}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{3}\left(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right)\)
\(=\dfrac{1}{3}\left(3\cdot\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=\dfrac{1}{3}\cdot3\cdot\overrightarrow{MG}=\overrightarrow{MG}\)
Cho tam giác ABC. Tìm tất cả các điểm M thỏa mãn TH:
Vecot MA - Vecto MB+ vecto MC= vecto 0
giúp mình với các thần đồng !!
Cho G là trọng tâm tam giác ABC. CM:
a) vecto GA + vecto GB + vecto GC= vecto 0
b) vecto MA + vecto MB + vecto MC= 3 vecto MG ( với mọi M)
a: Gọi M là trung điểm của AB
Xét ΔABC có
G là trọng tâm
M là trung điểm của AB
Do đó: CG=2/3CM
=>CG=2GM
=>\(\overrightarrow{CG}=2\overrightarrow{GM}\)
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)
\(=2\overrightarrow{GM}+\overrightarrow{GC}\)
\(=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{0}\)
b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)
\(=3\cdot\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=3\cdot\overrightarrow{MG}\)
Cho tam giác ABC. Tìm tập hợ điểm M sao cho
|vecto MA + vecto MB - vecto MC|= |2× vecto MA - vecto MB - vecto MC|
Giúp mình gấp nhé. Mai thi rồi
cho tam giác ABC . Tìm điểm M sao cho vecto MA + vecto MB + 2 MC = vecto
Mọi người làm giúp mình với cám ơn nhiều ạ
cho tam giác ABC. Hãy xác định điểm M thỏa mãn điều kiện :vecto MA -vecto Mb + vecto MC=0
Cho tam giác abc vuông tại b. AB=3a,BC=4a, vẽ điểm M sao cho Vecto MA+vecto MB-vecto MC=vecto 0,N là trung điểm của AC.Tính a dộ dài của vecto MN