A = \(\frac{12}{\sqrt{7+2\sqrt{6}}}\)
trục căn thức ở mẫu
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Trục căn thức ở mẫu
a) A= \(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
b) B = \(\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
c) C = \(\frac{12}{\sqrt{7}+2\sqrt{6}}\)
Trục căn thức ở mẫu;
\(\dfrac{7-6\sqrt{2}}{\sqrt{6}-\sqrt{3}-\sqrt{2}}\)
Trục căn thức ở mẫu các biểu thức sau:
\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}\)
\(b,\frac{9-2\sqrt{2}}{3\sqrt{6}-2\sqrt{2}}\)
\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}=\frac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\frac{20+6\sqrt{10}-5\sqrt{10}-9}{16-10}.\)
\(=\frac{11-\sqrt{10}}{6}\)
\(b,=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{54-8}\)
\(=\frac{\left(9-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{46}\)
Trục căn thức ở mẫu:
a) \(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
b)\(\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(a,\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{\left(\sqrt{2}+\sqrt{3}\right)^2-\sqrt{6}^2}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{2\sqrt{6}-1}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(2\sqrt{6}+1\right)}{2\sqrt{6}^2-1^2}=\frac{4\sqrt{3}+6\sqrt{2}+12+\sqrt{2}+\sqrt{3}+\sqrt{6}}{11}\)\(=\frac{\sqrt{6}+5\sqrt{3}+7\sqrt{2}+12}{11}\)
\(b,\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\left(\sqrt{z}+\sqrt{y}+\sqrt{z}\right)\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)}=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{z}^2}\)
\(=\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{x+2\sqrt{xy}+y-z}\)
1) thực hiện phép tính :
\(5\sqrt{8}-\dfrac{7}{2}\sqrt{72}+6\sqrt{\dfrac{1}{2}}\)
2) trục căn thức ở mẫu: \(\dfrac{6}{\sqrt{5}-1}\)
1) \(5\sqrt{8}-\dfrac{7}{2}\sqrt{72}+6\sqrt{\dfrac{1}{2}}\\ =5.\sqrt{4^2.\dfrac{1}{2}}-\dfrac{7}{2}.\sqrt{12^2.\dfrac{1}{2}}+6.\sqrt{\dfrac{1}{2}}=\left(5.4+\dfrac{7}{2}.12+6\right)\sqrt{\dfrac{1}{2}}\\ =68\sqrt{\dfrac{1}{2}}\)
2) \(\dfrac{6}{\sqrt{5}-1}=\dfrac{6.\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\dfrac{6\left(\sqrt{5}+1\right)}{5-1}\\ =\dfrac{6\left(\sqrt{5}+1\right)}{4}=\dfrac{3.\left(\sqrt{5+1}\right)}{2}\)
Trục căn thức ở mẫu và rút gọn :
\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}=\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)
\(=\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}=\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}=\sqrt{6}+\sqrt{2}+\sqrt{5}\)
Trục căn thức ở mẫu các biểu thức sau:
\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}\)
\(b,\frac{9-2\sqrt{2}}{3\sqrt{6}-2\sqrt{2}}\)
trục căn thức ở mẫu:
\(\frac{1}{\sqrt[3]{9}-\sqrt[3]{12}-\sqrt[3]{16}}\)
\(\hept{\begin{cases}\sqrt[3]{3}=a\\\sqrt[3]{4}=b\end{cases}}\)
\(\Rightarrow b^3-a^3=1\)
\(\Leftrightarrow-b^2-ab=a^2+\frac{1}{a-b}\)
Ta cần trục cái:
\(\frac{1}{a^2-ab-b^2}=\frac{1}{a^2+a^2+\frac{1}{a-b}}=\frac{a-b}{2a^3-2a^2b+1}\)
\(=\frac{\sqrt[3]{3}-\sqrt[3]{4}}{7-2\sqrt[3]{36}}=\frac{\left(\sqrt[3]{3}-\sqrt[3]{4}\right)\left(49+14\sqrt[3]{36}+24\sqrt[3]{6}\right)}{55}=\frac{\sqrt[3]{3}-7\sqrt[3]{4}-4\sqrt[3]{18}}{55}\)
1) thực hiện phép tính
\(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
2) trục căn thức ở mẫu : \(\dfrac{2}{\sqrt{3}-5}\)
3) khử mẫu của biểu thức lấy căn: \(\sqrt{\dfrac{2}{5}}\)
1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)
\(=5\sqrt{3}\)
2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)
\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)
\(=\dfrac{-\sqrt{3}-5}{11}\)
3) Ta có: \(\sqrt{\dfrac{2}{5}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)
\(=\dfrac{\sqrt{10}}{5}\)